T.C.
FIRAT ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

LİFLİ BETON BORULARIN DURABİLİTESİ
KIRILMA PERFORMANSI VE KULLANILABİLİRLİĞİNİN
ARAŞTIRILMASI

SERVET YILDIZ

DOKTORA TEZİ
İNŞAAT MÜHENDİSLİĞİ ANABELİM DALI

ELAZIĞ
1998
T.C.
FİRAT ÜNİVERSİTESİ
FEN BİLİMLERİ ENSTİTÜSÜ

LİFLİ BETON BORULARIN DURABİLİTESİ
KIRILMA PERFORMANSI VE KULLANILABİLİRLİĞİNİN
ARAŞTIRILMASI

SERVET YILDIZ

DOKTORA TEZİ
İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

Bu tez, tarihinde, aşağıda belirtilen jüri tarafından oylamalı / oyuçaklı ile başarılı / başarısız olarak değerlendirilmiştir.

Tezin Danışmanı : Yrd. Doç. Dr. Zülfü Çınar ULUCAN
Jüri üyesi : ..
Jüri üyesi : ..
ÖZET

Dokторa Tezi

LİFLİ BETON BORULARIN DURABİLİTESİ KIRILMA PERFORMANSI VE KULLANILABİLİRİNİN ARASTIRILMASI

SERVET YILDIZ

Fırat Üniversitesi
Fen Bilimleri Enstitüsü
İnşaat Mühendisliği Anabilim Dalı

1998 , Sayfa : 137

Cam lifli beton borular üzerine yapılan bu araştırmada; lif oranının beton numuneleri üzerindeki etkileri araştırılarak normal beton özellikleri ile karşılaştırılmıştır. Ayrıca ağırlıkça % 0.2, 0.4 ve %0.6 oranlarında cam lifli katılması beton borular standart yöntemlere göre test edilmiştir.

Hazırlanan cam lifli beton numuneleri üzerinde; basınç, çekme, eğilmede çekme, donma-çözülme, aşınma ve su emme deneyleri yapılarak malzemenin statik yüklemeler altındaki davranışları incelenmiştir. Elde edilen sonuçlar, normal beton deney sonuçları ile karşılaştırılmıştır. Deney sonuçlarına göre; betonun çekme dayanımında %94.74 ve eğilmede çekme dayanımında %67.78'lik bir artış sağlanmıştır. Yine bu deney sonuçlarına göre; yük-deformasyon eğrileri çizilerek, lifli betonun dayanımı ve kırılma özellikleri hakkında temel bilgiler elde edilmiştir.

Beton borular üzerinde ise tepe basınçlı, sızdırmaşık, alın yüzünün düzgünliğünün muayenesi, biçim ve görünüş muayenesi, boru iç yüzünün düzgünliğünün muayenesi deneyleri yapılmıştır. Bulunan deney sonuçlarına göre; cam lifli ilave edilmiş beton borularının tepe basınç yükünde %25 oranında bir artış sağlanmış ve lifli beton boruların yüzeyindeki pürüzlülüğün ve çatlakların, normal beton borulara göre daha az olduğu tespit edilmiştir. Ayrıca beton borulardaki kırılma yüklerine göre gerilme analizleri yapılmıştır.

Sonuç olarak; cam lifin, beton borularda sağladığı %25’lik tepe basınç yükü artışından dolayı boruların cidar kalınlığında azalma gidilebileceği tespit edilmiştir. Boru maliyetinde; %0.2 lif oranına kadar lif katkısı durumunda boru maliyetinde azalma olduğu tespit edilmiştir. Malzeme özellikleri, boru geometrisi ve borunun taşıma gücü arasındaki teorik iliski kurulmuştur.

ANAHTAR KELİMELER: Çimento, beton, cam lif, cam lifli beton, tepe basınç yükü, donma-çözülme direnci, sızdırmaşık, çekme, eğilmede çekme, basınç, pürüzlülük, aşınma, su emme.
SUMMARY
PhD Thesis
THE INVESTIGATION OF DURABILITY, FRACTURE PERFORMANCE AND USAGE OF FIBER REINFORCED CONCRETE

Servet YILDIZ

Fırat University
Graduate School of Natural and Applied Sciences
Department of Civil Engineering

1998, Page: 137

In this study, the effect of fibre contents on the reinforced concrete specimens have been investigated and the obtained results have been compared with those of the plain concrete. In addition, the reinforced concrete pipes containing 0.2, 0.4 and 0.6 glass fibre (by weight) have been tested according to the standart procedures.

In order to determine the behavior of the material under the static loads, compression strength, tensile strength, flexural strength, freeze-thaw, abrasion and weathering tests on the prepared glass-fiber reinforced concrete specimens are performed. The obtained results have been compared to the results of the normal concrete tests. According to test results, it has been observed that the tensile strength and flexural strength of the glass-fiber reinforced concrete have increased by 94.74 and 67.78 respectively. Further more, the basic information on the durability and fracture of glass-fiber reinforced concrete were obtained by load- deflection curves.

The top pressure, watertightness and the surface quality tests of inside and out side of the pipe have also been performed on the glass fiber reinforced concrete pipes. According to the obtained results, the top pressure load of the reinforced concrete containing glass fibre is increased by 25 and it has also been observed that the surface roughness and cracks of the glass fiber reinforced concrete pipes are less than those of the normal concrete pipes. In addition to that, the strength analysis is studied in terms of the ultimate loads of the concrete pipes.

Finally, it is concluded that the thickness of the pipes can be decreased because of increasing by 25 top pressure load by adding glass fibre. It is also found out that the cost of the pipes containing glass fibre decreases until 0.2 fiber-glass content (by weight). A theoretical relationship between the properties of materials, geometry and the load bearing capacity were also studied.

KEY WORDS: Cement, concrete, glass fibre, fiber glass reinforced concrete, top pressure load, freeze-thaw, watertightness, tension, compression, flexural strength, toughness, abrasion, weathering.
TEŞEKKÜR

İÇİNDEKİLER

ÖZET ... i

SUMMARY ... ii

TEŞEKKÜR ... iii
İÇİNDEKİLER ... iv
ŞEKİLLER LISTESİ .. ix
TABLOLAR LISTESİ ... xi
SİMGELER .. xiv

1. GİRİŞ ... 1

2. GENEL BİLGİLER ... 5

2.1. Cam Lifin Tanımı, Önemi ve Geleceği ... 5
2.1.1. Cam elyafı çeşitleri ... 8
2.1.2. Kalıplama metotları ve kullanılan cam elyafı çeşitleri 10
2.2. Beton Boru Yapım Kuralları .. 11
2.2.1. Malzeme seçimi .. 12
2.2.2. Yapım metotları .. 13
2.2.2.1. Kahba dökme ve titreşimle sıkıştırma metoduyla boru yapımı 14
2.2.2.2. Döner başlıklı kalıplarla üretim ... 15
2.2.2.3. Titreşimli tokmaklamaya boru yapımı .. 15
2.2.2.4. Savurma dökümle boru yapımı .. 16
2.3. Bakım Metotları ... 17
2.4. Beton Boruların Dizaynında Kırılma Mekanı .. 18
2.4.1. Dairesel borulara eğilme modunun boyut, şekil ve kırılma dayanımının etkisi ... 19
2.4.2. Düz tabanlı borulara yük dağılımı etkisi .. 22
2.5. Lifli Betonarme Malzeme Deneyleri İçin Metotlar ve Tavsiyeler 27
2.5.1. Basınç Deneyi .. 28
2.5.2. Basınçta üç şartları etkileri 29
2.5.2.1. Mafsalli uçlar ... 29
2.5.2.2. Sabit uçlar .. 29
2.5.2.3. Plaka sürtünmesi ... 30
2.5.3. Basınçta gerilme-birim deformasyon eğrileri 30
2.5.4. Direkt çekmede deney teknipleri 33
2.5.5. Çekmede gerilme-birim deformasyon eğrileri 35
2.5.6. Eğilme deneyi .. 36
2.5.7. Eğilme çatlama gerilmesi 36
2.5.8. Önceden dökülmüş beton boruların dayanımı ile ilgili konular 38

3. KAYNAK ARAŞTIRMASI .. 40

4. ARAŞTIRMADA KULLANILAN MALZEMELER 55

4.1. Malzeme .. 55
4.1.1. Cam elyafı .. 55
4.1.2. Portland çimentosu ... 57
4.1.3. Karma suyu ... 58
4.1.4. Agrega .. 58
4.1.5. Su/Çimento oranı ... 61
4.1.6. Karışım oranı ve hesabi 61
5. CAM LİFLİ BETON NUMUNELERİ ÜZERİNDE YAPILAN DENEYLER VE SONUÇLARI .. 62

5.1. Basınç Dayanımı .. 62

5.1.1. Giriş ... 62

5.1.2. Deney yöntemi ve sonuçlar ... 63

5.1.3. Tartışma .. 64

5.2. Cam Lif Katkılı Betonların Donma-Çözülme Tesirleri Altında Davranışı 65

5.2.1. Giriş ... 65

5.2.2. Deney yöntemi ve sonuçlar ... 66

5.2.3. Tartışma .. 67

5.3. Sürünme Yolu İle Aşınma Kaybı .. 69

5.3.1. Giriş ... 69

5.3.2. Deney yöntemi ve sonuçlar ... 70

5.3.3. Tartışma .. 72

5.4. Ekserel Çekme Dayanımı .. 73

5.4.1. Giriş ... 73

5.4.2. Deney yöntemi ve sonuçlar ... 74

5.4.3. Tartışma .. 76

5.5. Cam Lifli Malzemelerin Çekme Dayanımı İçin Alternatif Bir Çözüm 77

5.5.1. Giriş ... 77

5.5.2. Deney yöntemi ve sonuçlar ... 78

5.5.3. Tartışma .. 80

5.6. Eğilme Dayanımı .. 81

5.6.1. Giriş ... 81

5.6.2. Deney yöntemi ve sonuçlar ... 82

5.6.3. Tartışma .. 85
6. CAM LİFLİ BETON BORULAR ÜZERİNDE YAPILAN DENEYLER VE SONUÇLARI ... 87

6.1. Tepe Basınç Yükü .. 87
6.1.1. Giriş .. 87
6.1.2. Deney yöntemi ve sonuçlar .. 88
6.1.3. Tartışma .. 91
6.1.4. Cam lifli beton boruları tepe basınç yükünün teorik olarak hesabı 94
6.2. Sızmırlazlık .. 98
6.2.1. Giriş .. 98
6.2.2. Deney yöntemi ve sonuçlar .. 99
6.2.3. Tartışma .. 100
6.3. Su Emme .. 101
6.3.1. Giriş ... 101
6.3.2. Deney yöntemi ve sonuçlar .. 101
6.3.3. Tartışma .. 102
6.4. Biçim ve Görünüş Muayenesi ... 103
6.4.1. Giriş ... 103
6.4.2. Deney yöntemi ve sonuçlar .. 103
6.4.3. Tartışma .. 104
6.5. Alın Yüzünün Düzensizliğinin Muayenesi ... 104
6.5.1. Giriş ... 104
6.5.2. Deney yöntemi ve sonuçlar .. 106
6.5.3. Tartışma .. 106
6.6. Boru İç Yüzünün Düzensizliğinin Muayenesi ... 107
6.6.1. Giriş ... 107
6.6.2. Deney yöntemi ve sonuçlar .. 107
6.6.3. Tartışma .. 109
7. CAM LİFLİ BETON BORULARDA GERİLME ANALİZİ ve DEPLASMAN HESABI .. 110

8. EKONOMİK ANALİZ .. 121

9. SONUÇ VE ÖNERİLER ... 128

KAYNAKLAR ... 132
ŞEKİLLER LİSTESİ

Şekil 2.1. Beton Borulara Uygulanan Tipik Bir Buhar Kürü Süreci 18
Şekil 2.2. Beton Borularda Eğilme Çeşitleri .. 19
Şekil 2.3. Bir Borunun Normal Eğilme Dayanımındaki Değişimi 20
Şekil 2.4. Deney Düzeneği A, B ve 800 mm İç Çaplı (C) Bir Boru İçin Yük Dağılımı...... 22
Şekil 2.5. Sonlu Elemanlara Ayrılmış Bir Parçanın A Yüklemesi Altında

Meydana Gelen Deformasyon ve Çatlama Modeli ... 24
Şekil 2.6. Yük-Deplasman Eğrisi .. 24
Şekil 2.7. Basınçta 102 mm’lik Küp Numuneler İçin

Gerilme-Birim Deformasyon Eğrileri .. 31
Şekil 2.8. Basınç Altında (30 günlük) 300×100×100 mm’lik Prizmalar İçin
Gerilme-Ortalama Birim Deformasyon Eğrileri .. 33
Şekil 2.9. Çatlag Bir Numune İçin Mümkin Olan Ölçme Pozisyonları 35
Şekil 2.10. Sabit ve Mafsalli Uç Şartları İçin Çatlamış Bir Kesit Boyunca

Mümkin Olan Gerilme Dağılımı ... 36
Şekil 3.1. Değişik Lif Katkısı Betonlar İçin Yük-Deplasman Eğrileri 41
Şekil 3.2. Standart Mod I Eğilme Numunesi .. 42
Şekil 3.3. Standart ModII Kompakt Çekme Numunesi ... 43
Şekil 3.4. Önerilen Mod II Deney Numunesi .. 43
Şekil 3.5. Tokluk İndeksinin İki Tanımı ... 46
Şekil 3.6. Lif Oranının Artması İle Elde Edilen Artın Eğrileri ... 52
Şekil 4.1. Elazığ-Çemşigezek Agrecası Granülometri Eğrisi .. 61
Şekil 5.1. Lif Oranlarına Bağlı Olarak Basınç Dayanımlarının Değişimi 64
Şekil 5.2. Lif Oranlarına Bağlı Olarak Donma-Çözülme Miktarlarının Değişimi 68
Şekil 5.3. Cam Lifin Betonlarda Sürünme Yolu İle Aşınma Kaybına Etkisi 72
Şekil 5.4. Eksenel Çekme Deneyi İçin Kullanılan Kalıpın Ebatları (mm) 74
Şekil 5.5. Lif Oranlarına Bağlı Olarak Eksenel Çekme Dayanımlarının Değişimi 75
Şekil 5.6. Lif Oranlarına Bağlı Olarak Numunelerde Meydana

Gelen Uzama Miktarlarının Değişimi ... 76
Şekil 5.7. Eksenel Çekme Deneyi İçin Kullanılan Kalıpın Ebatları 77
Şekil 5.8. Eksenel Çekme Deneyi İçin Özel Olarak Yapılmış Deney Aleti

Şekil 5.9. Lif Oranlarına Bağlı Olarak Çekme Dayanımının Değişimi

Şekil 5.10. Lif Oranlarına Bağlı Olarak Uzama Miktarlarının Değişimi

Şekil 5.11. Eğilme Deneyinde Tek Noktadan Yüklenmiş Basit Kirişin

Yükleme Başlığı ve Yükleme Tablası Durumu

Şekil 5.12. Eğilme Deneyinde Üçte Bir Noktalarından Yüklenmiş Basit Kirişin

Yükleme Başlığı ve Yükleme Tablası Durumu

Şekil 6.1. Basınç Presine Yerleştirilmiş Deney Numunesi

Şekil 6.2. Lif Oranlarına Bağlı Olarak Tepe Basıncı Yüklerinin Değişimi

Şekil 6.3. Lif Oranlarına Bağlı Olarak Tepe Basıncı Yüklerinin Değişimi (1 Yıllık)

Şekil 6.4. Yük-Deplasman Eğrileri

Şekil 6.5. Beton Borularda Lif Oranlarına Bağlı Olarak Meydana Gelen

İlave Su Miktarlarının Değişimi

Şekil 6.6. Lif Oranlarına Bağlı Olarak Su Emme Miktarlarının Değişimi

Şekil 6.7. Beton Borularda Alın Yüzünün Düzgünliğinin Muayenesinde

Kullanılan Çelik Şablonun Şekli

Şekil 6.8. Boru İç Yüzünün Düzgünlik Muayenesi İçin Kullanılan Çelik Mastar

Şekil 7.1. Sonlu Elemanlara Ayrılmış Beton Borunun Yükleme Durumu

Şekil 7.2. Sonlu Elemanlara Ayrılmış Beton Borunun Elemanlara Ayrılmış Durumu

Şekil 7.3. Sonlu Elemanlara Ayrılmış Beton Borunun Düğüm Noktalarına

Ayrılmış Durumu

Şekil 7.4. Sonlu Elemanlara Ayrılmış Beton Borunun yük Altında

Deforme Olmuş Hali

Şekil 7.5. Sonlu Elemanlara Ayrılmış Beton Borunun σ_{xx} Gerilme Dağılışı

Şekil 7.6. Sonlu Elemanlara Ayrılmış Beton Borunun σ_{yy} Gerilme Dağılışı

Şekil 7.7. Sonlu Elemanlara Ayrılmış Beton Borunun τ_{xy} Gerilme Dağılışı

Şekil 7.8. Sonlu Elemanlara Ayrılmış Beton Borunun S1 Asal Gerilme Dağılışı

Şekil 7.9. Sonlu Elemanlara Ayrılmış Beton Borunun S2 Asal Gerilme Dağılışı

Şekil 7.10. Sonlu Elemanlara Ayrılmış Beton Borunun S3 Asal Gerilme Dağılışı
<table>
<thead>
<tr>
<th>Tablo</th>
<th>Adı</th>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablo 2.1</td>
<td>Başlıca Cam Elyafi Cinslerinin Kompozisyonları</td>
<td>6</td>
</tr>
<tr>
<td>Tablo 2.2</td>
<td>Beton Borularının Yapımında Kullanılacak İnce</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Agreganın Tane Büyüklüğü Dağılımı</td>
<td></td>
</tr>
<tr>
<td>Tablo 2.3</td>
<td>Beton Borularının Yapımında Kullanılacak İri</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Agreganın Tane Büyüklüğü Dağılımı</td>
<td></td>
</tr>
<tr>
<td>Tablo 2.4</td>
<td>DeneySEL Olarak Elde Edilen Eğilme Mukavemeti ve Buna Karşılık Gelen</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Kırılma Mekaniği Kullanılarak Tahmin Edilen Betonun Çekme Mukavemeti...</td>
<td></td>
</tr>
<tr>
<td>Tablo 2.5</td>
<td>İÇ Çapı 800 mm Olan Borular için Elde Edilen Deney Sonuçları</td>
<td>22</td>
</tr>
<tr>
<td>Tablo 2.6</td>
<td>$f_c=2,85$ Mpa ve Değişik f_c (= E_G/ff_c^2) Değerleri İçin Hesaplanan</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Kırılma Yükleri (kN/m)</td>
<td></td>
</tr>
<tr>
<td>Tablo 2.7</td>
<td>$f_c=2,85$ Mpa ve Değişik f_c Değerleri İçin Yük Dönüşüm Faktörü C/B İçin</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Hesaplanan Kırılma Yükleri</td>
<td></td>
</tr>
<tr>
<td>Tablo 2.8</td>
<td>DeneySEL Eğilme Mukavemetleri ve Buna Karşılık Gelen Değişik</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Teorilerden Tahmin Edilen Betonun Çekme Mukavemeti</td>
<td></td>
</tr>
<tr>
<td>Tablo 2.9</td>
<td>Tipik Birim Deformasyon Ölçüm Teknikleri</td>
<td>31</td>
</tr>
<tr>
<td>Tablo 3.1</td>
<td>Eğilme Numunelerinin Kırılma Mukavemeti Sonuçları</td>
<td>47</td>
</tr>
<tr>
<td>Tablo 3.2</td>
<td>Eğilme Numunelerinden Elde Edilen Kırılma Toklüğu ve Tokluk İndeksi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sonuçları</td>
<td>48</td>
</tr>
<tr>
<td>Tablo 3.3</td>
<td>Kompakt Çekme Numunelerinden Elde Edilen Kırılma Mukavemeti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sonuçları</td>
<td>48</td>
</tr>
<tr>
<td>Tablo 3.4</td>
<td>Kompakt Çekme Numunelerinden Elde Edilen Kırılma Toklüğu ve Tokluk İndeksi Sonuçları</td>
<td>49</td>
</tr>
<tr>
<td>Tablo 3.5</td>
<td>Mod II Deney Numunelerinden Elde Edilen Kesme Mukavemeti Sonuçları.....</td>
<td>50</td>
</tr>
<tr>
<td>Tablo 3.6</td>
<td>Mod II Deney Numunelerinden Elde Edilen Tokluk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>İndeksi Sonuçları</td>
<td>51</td>
</tr>
<tr>
<td>Tablo 4.1</td>
<td>Cam Liflerine Ait Bazı Tipik Değerler</td>
<td>56</td>
</tr>
<tr>
<td>Tablo 4.2</td>
<td>Portland Çimentosunun Analiz Sonuçları</td>
<td>57</td>
</tr>
<tr>
<td>Tablo 4.3</td>
<td>1 Nolu Malzemeye Ait Granülometrik Bileşim</td>
<td>58</td>
</tr>
<tr>
<td>Tablo 4.4</td>
<td>2 Nolu Malzemeye Ait Granülometrik Bileşim</td>
<td>59</td>
</tr>
<tr>
<td>Tablo</td>
<td>Başlık</td>
<td>Sayfa</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>4.5</td>
<td>3 Nolu Malzemeye Ait Granülometrik Bileşim</td>
<td>59</td>
</tr>
<tr>
<td>4.6</td>
<td>Elazığ-Çemişgezek Agregasyon Elek Analizi Sonuçları</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>Beton Karışım Oranları</td>
<td>61</td>
</tr>
<tr>
<td>5.1</td>
<td>Cam Lifli Beton Numunelerinin Basınç Dayanımı</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Deney Sonuçları</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Lif Katkılı Betonların Donma-Cözülme Deney Sonuçları</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>1 Yıllık Beton Parçaların Donma-Cözülme Deney Sonuçları</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Cam Lif Katkılı Betonlarda Sürünme Yolu İle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aşınma Kaybı</td>
<td>72</td>
</tr>
<tr>
<td>5.5</td>
<td>Cam Lifli Beton Numunelerinin Çekme Deneyi Sonuçları</td>
<td>75</td>
</tr>
<tr>
<td>5.6</td>
<td>Çekme Deneyi Alıtında Uzama Miktarları</td>
<td>76</td>
</tr>
<tr>
<td>5.7</td>
<td>Basınç Etkisi Alıtında Betonda Meydana Gelen Çekme Dayanımı</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deney Sonuçları (28 Günlük)</td>
<td>79</td>
</tr>
<tr>
<td>5.8</td>
<td>Tek Noktadan Yüklenmiş Numunelerin Eğilme Dayanımı</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deney Sonuçları</td>
<td>84</td>
</tr>
<tr>
<td>5.9</td>
<td>Üçte Bir Noktalardan Yüklenmiş Numunelerin Eğilme Dayanımı</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deney Sonuçları</td>
<td>85</td>
</tr>
<tr>
<td>6.1</td>
<td>Baskı ve Mesnet Lataları Genişlikleri</td>
<td>88</td>
</tr>
<tr>
<td>6.2</td>
<td>Beton Borularda Tepe Basınç Yükü Deneyindeki Min.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kırılma Yükleri</td>
<td>89</td>
</tr>
<tr>
<td>6.3</td>
<td>Beton Boru İmalatında Kullanılan Malzeme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Karışım Oranları (%)</td>
<td>89</td>
</tr>
<tr>
<td>6.4</td>
<td>Değişik Çaplardaki Beton Borular İçin Tepe Basınç Yükü Deney Sonuçları</td>
<td>90</td>
</tr>
<tr>
<td>6.5</td>
<td>Değişik Çaplardaki Beton Borular İçin Tepe Basınç Yükü Deney Sonuçları</td>
<td>91</td>
</tr>
<tr>
<td>6.6</td>
<td>Denyesel Tepe Basınç Yüklerinin Formülle Bulunan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yüklerle Karşılaştırılması</td>
<td>98</td>
</tr>
<tr>
<td>6.7</td>
<td>Beton Borulara Ait Her m² İç Yüzey Başına İzin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verilen İlave Su Miktarı</td>
<td>99</td>
</tr>
<tr>
<td>6.8</td>
<td>Lif Katkılı Beton Borulara Ait Sızdırmazlık Deney Sonuçları</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>Lif Oranlarına Bağlı Olarak Su Emme Deneyi Sonuçları</td>
<td>102</td>
</tr>
<tr>
<td>6.10</td>
<td>Beton Borularda Kabul Edilen Tolerans Değerleri</td>
<td>104</td>
</tr>
</tbody>
</table>
Tablo 6.11. Beton Borularda Alın Yüzünün Düzensizliğindeki Tolerans Değerleri105
Tablo 6.12. Lifli Beton Borularda Alın Yüzünün Düzensizliğinin Deney Sonuçları106
Tablo 6.13. Cam Lifli Beton Borularda Boru İç Yüzeyinde Ölçülen Eğrilik Değerlerinin Deney Sonuçları ..108
Tablo 7.1. Lif Oranlarına Bağlı Olarak Elastisite Modüllerinin Değeri110
Tablo 7.2. Cam Lifli Beton Boruların Sap 90 İle Max. Çekme ve Max Basınç Çözüm Sonuçları ..111
Tablo 7.3. Cam Lifli Beton Boruların Sap 90 İle Max. Yatay ve Max Düşey Deplasmanlarının Çözüm Sonuçları ..112
Tablo 8.1. Buhar Kürlü Beton Boruların Bünyesine Giren Beton, Çimento, Kum-Çakıl Miktarları İle Dolgudan Düşulecek Boru Dış Hacmi ...121
Tablo 8.2. φ200 mm. Buhar Kürlü (Muflu) Beton Borunun Birim Fiyatı122
Tablo 8.3. φ300 mm. Buhar Kürlü (Muflu) Beton Borunun Birim Fiyatı123
Tablo 8.4. φ400 mm. Buhar Kürlü (Muflu) Beton Borunun Birim Fiyatı124
Tablo 8.5. φ500 mm. Buhar Kürlü (Muflu) Beton Borunun Birim Fiyatı125
Tablo 8.6. φ600 mm. Buhar Kürlü (Muflu) Beton Borunun Birim Fiyatı126
Tablo 8.7. Cam Lifli Beton Boruların Lifsz Borularla Fiyatlarının Mukayesesi127
SİMGELER LISTESİ

A : Kesit Alanı
AK : Açınınma Kaybı
Aₕₐ : Su Emne Deneyine Tabii Tutulmuş Numunelerin Arşimed Terazisindeki Ağrılığı
A₅κₑy : Arşimed Terazisinde Ağrılığı Bulunan Numunelerin Doygun Yüzey Kuru Haldeki Ağrılığı
ACI : American Concrete Intitute
ASTM : American Society For Testing and Materials
A.Ş. : Anonim Şirket
aₖ : Kuru Kütle
aₑ : Su Emdirilmiş Kütle
B : Numune Kahınığı
b : Lata Genişliği
BD : Basınç Dayanımı
C₂S : Bikalsiyum Silikat (2Cal SiO₂)
C₃S : Trikalsiyum Silikat (3Cal SiO₃)
C₃A : Trikalsiyum Alüminat (3CaO Al₂O₃)
C₄AF : Tetrakalsiyum Ferro Alüminat (4CaO Al₂O₃ Fe₂O₃)
Çₖ : Çekme Dayanımı
D : Lif Çapi
Dₑ₅ₙₑ₅ : Agreganın Maksimum Boyutu
Dₙ : Borunun İç Çapi
DYK : Doygun Yüzey Kuru
E : Elastisite Modülü
E.B.T.B. : En Büyük Tane Büyüklüğü
E.K.T.B. : En Küçük Tane Büyüklüğü
fₜ : Normalize Edilmiş Mukavemet
fᵢ : Eğilme Mukavemeti
Grₔ : Betonun Kırılma Enerjisi
H₀ : Açınınma Öncesi Numune Hacmi
H₄ : Açınınma Peryotları Sonunda Numune Hacmi
K : Cam Lifsisiz Kontrol Numunesi
Kₙ : Kilogram
Kₑₛ : Kırılma Tokluğu
Iₙₜₑ : Malzemenin Gerçek Boyu
L : Lif Boyu
L₁ : Boru Anma Boyu
L₂ : %0,2 Cam Lifli Numune
L₄ : %0,4 Cam Lifli Numune
L₆ : %0,6 Cam Lifli Numune
N : Newton
P : Maksimum Çatlama Yükü
Pₙ : Portland Çimentosu
Pₜ : Beton Numunesinin Taşıyabileceği Maksimum Kuvvet
S : Su Emme
 t : Cidar Kalınlığı
 T.İ. : Tokluk İndeksi
 t₂ : Muf Derinliği
 TS : Türk Standartları
 W : Numunenin Derinliği
 W₁ : İlk Kuru Ağırlık
 W₂ : 100 Devir Sonundaki Kuru Ağırlık
 W₃ : 500 Devir Sonundaki Kuru Ağırlık
 V : Beton hacmi
 V₁ : Boru İç Hacmi
 V₂ : Boru Muf Boşluk Hacmi
 V₃ : Boru Dış Gövde Hacmi
 V₄ : Muf Dış Hacmi
 V₅ : Ve diğerleri
 V₆ : Ve benzeri
 σₑ : Eğilme Dayanımı
 σₑₜₕ : Çekme Gerilme
1. GİRİŞ

Son yıllarda beri Avrupa’da ve diğer gelişmiş ülkelerde değişik türdeki liflerin katkısı ile üretilen lifli betonlar büyük bir başarıyla ve giderek yaygınlaşan bir şekilde kullanılmaktadır. Sanayi atıği olarak elde edilen çeşitli liflerin yanında özel olarak bu amaç için üretilen lifler de kullanılmaktadır. Betonda en sık kullanılan lifler; çelik, polipropilen, cam, mika ve kevlar gibi liflerdir.

Çimento kullanılan bütün beton imalatlarda büyük ekonomin avantajlar yanında, çok basit kullanımı ve hava şartlarının getirdiği sorunları yok eden yapay beton lifleri aynı zamanda asbestos yerine de kullanılabilir. Türkiye şartlarına göre yapay beton liflerin sağladığı ekonomin avantajlar göz ardı edilemez. Yapay beton liflerin sağladığı önemli nitelikler kısaca aşağıdaki şekilde sıralanabilir:

1- Beton harcının içinde çok kısa zamanda dağılır. Kuruma zamanında ince çatlaklar oluşmaz.
2- Su/çimento oranı aynı olan betonlarda yapay lif kullanıldığında basınç mukavemetinin artması mümkündür.
3- Demir örgü ve iskelet içine yapılan dökümde harç karışımının dökümüne bazı çare bulunamadığından yapay liflerin kullanılması sorunları ortadan kaldırır.
4- Liflerin iyi bir şekilde dağılmışa, satıhta istenmeyen durumların, çatlamanın oluşmasını önlemiş olur.
5- Yapay liflerin kullanılması durumunda betonun yorumu mukavemetinde artma olabilir.

Lifli beton su, çimento, ince ve kaba agrega ve betonun içine gelişigüzel katılmış metal, naylon, cam, çelik, polipropilen, mika, kevlar ve benzeri gibi liflerden oluşan bir beton türüdür. Lifler narinlik oranları ile tanımlanabilirler ki bu oran lif boyunun (L) lif çapına (D) bölümdür. Lif hacim yüzdesi ise lif hacminin beton dolu hacmi içinde tuttuğu yüzdeyi vermektedir. Tarıftan de anlaşılaçağı üzere lifli beton normal betonun bir çeşit katki maddesiyle takviye edilmiş bir türüdür. Betonun düşük çekme dayanımı, gevrek bir malzeme olduğu, rötre ve sünmeden dolayı oluşan güçlükler, öngerilmeli ve kütle
betondarda, derz yapılmasına imkan olmayan yerlerde, betonun darbe ve yorulmaya maruz kaldığı yerlerde, devamlı ve yüksek ısı değişimi şartlarında betonun istenilen düzeyde vazıfe görmesini engellemektedir. Bu şartlar altında betonun ihtiyaç a cevap verebilecek şekilde katki maddesi ile takviyesi şarttır. Artan basınç ve çekme dayanımı elastisite modülü, dayanıklılığı ve yüksek darbe mukavemeti ile lifli beton bu ihtiyaçlara cevap verebilecek bir malzeme olarak uygulama sahası bulabilmiştir.

Yukarıda belirtilen özellikleri ile birçok ileri teknolojiye sahip ülkelerde yol kaplamaları, hava limanları, dalgakranlar gibi büyük projelerden başka yapıp şartlarının gerektirdiği zaman öngörülmeli beton imalinde, yüksek ısıya maruz kalan tabliye ve bacalarda daimi darbe etkisinde olan temel ve köprü ayaklarında, çeşitli tamir işlerinde ve benzeri yerlerde tercih sebebi olmuştur. Bu uygulamaya paralel olarak yürütülen bilimsel çalışmaların son 20 yıl içinde içine sığdırmak mümkündür.

Kısaca bahsetmek gerekirse: Lifli betonun doşusu, J. Romualdi ve J. Mandelin betonun çekme gerilimesini artırmak maksadı ile normal donatı yerine kirişlerde çok sık ve ince teller kullanmalara rastlar. Araştırmacılar çekme dayanımının belirli bir tel aralığından sonra süratle arttığını gördükleri için ve pratik güçlükler yaratıldığından kirişlere sürekli tel yerine tel parçaları katıp deneylerden benzer sonuçlar elde etmeye çalışmışlardır.

Lifli beton üzerine yapılan en geniş araştırma Building Research Establishment tarafından yürütülmüştür. Bu çalışma da ise beton numuneler üzerinde; eğilme, direkt çekme, basınç, su emme, sızmazlık, donma-çözülme, aşınma ve beton borularda ise
tepe basıncı, sızdırmazlık, alın yüzünün düzgünliğinin muayenesi, biçim ve görünüş
muayenesi, boru iç yüzünün düzgünliğinin muayenesi deneyleri yapılmıştır. Gerek
ülkemizde bu konu üzerine bir araştırmının yapılmamış olması ve gerekse diğer
ülkelerdeki araştırmaların büyük bir kısmının lifli betonun bir veya birkaç özelliğini ve
çalışma şeklini konu almış olmaları ve her araştırmanın değişik tipte malzeme ve
numune ile çalışmış bulunması lifli beton davranışları arasında olabilecek ilişkileri
yeterince gün işığına çıkaramamıştır.

Bu araştırmada temel amaç cam lifli betonun taze ve sert durumlardaki
davranışlarının ortaya konması ve bu tip lifli betonların beton boru yapımında
kullanılabilirliğini araştırılmasınıdır. Beton boruların cam lifi katılarak üretilmesi ve
özellikle liflerin kırılma mekanizmasına etkisi incelenmiştir. Araştırmaya esas çalışmalar
ana hatları ile aşağıdaki özetlenmektedir:

a- Mevcut bilgiler ışığında, ülkemizde bulunan malzemeleri kullanarak yeterli vaspırları
olan lifli beton elde edebilmek ve imalat sırasında doğabilecek güçlükleri tespit etmektedir.
b- Çeşitli lifli beton karışınımları yardımı ile taze beton özelliklerini incelemek ve bunları
normal beton özelliklerini ile karşılaştırmak.
c- Lifli betonu basıncı, çekme ve eğilme deneylerine tabi tutarak malzemenin statik
yüklemeler altındaı davranışını incelemek ve normal beton deney sonuçları ile olan
ilişkileri araştırmak.
d- Cam lifli beton ve normal beton yük deformasyon diyagramlarını değişik deneyler
sonucu elde ederek cam lifli betonun dayanıklılığı hakkında bilgi edinmek.
e- Cam lifli betonun donma-çözülme ve darbe tesirleri altında incelemek.

Kısaca özetlemek gerekirse; kırılma performansı ve diğer özellikler genel anlamda
bilinen cam lifli betonların ülkemizde kullanılırabilirliği ortaya konduktan sonra, toksit
etkileri olan asbestli beton borulara alternatif oluşturmaktır. Ayrıca lif kullanımı ile imalat
sonrası taze halde taşınabilirliğini arttırarak üretim kapasitesini artırmak ve, cidar
kalınlığını azaltarak malzemeden tasarruf sağlamak temel amaçtır. Bu amaçlarla
su/çimento oranı, narinlik oranı ve lif hacim yüzdesi parametre olarak seçilmiş olup, diğer değişkenler deneyler sırasında sabit tutulmuştur.

2. GENEL BİLGİLER

2.1. Cam Lifin Tanımı, Önemi ve Geleceği

1940’lı yıllarda bu yana, değişik cam elyafı tipleri plastiklerin takviyesinde kullanılmaktadır. Bu şekilde, plastiklerin çekme ve eğilme dayanmaları, rıjitlik ve darbe dayanmaları gibi fiziksel özelliklerini arttırmaktaydı. Piyasadaki cam elyafı takviye malzemeleri, çeşitleri ile, günümüzde takviyeli plastik kalıplarlarına geniş bir seçenek yelpazesi sağlamaktadır.

Lifler ayrıca, demetler halinde bir arada tutulabilmesi ve proces sırasında oluşabilecek aşınmalardan korunabilmesi için bağlayıcı adı verilen bir kimyasal madde ile kaplanır. Bu bağlayıcı, cam elyafının daha sonraki proses işlemleri için gerekli olan temel
özellikleri de sağlar. Bu şekilde üretilen ıslak cam lifleri, prosese sokulmadan önce 120-130°C sıcaklıkta, 10-15 saat süre ile hava firmandında kurutulur.

Yüksek mekanik dayanım aranan ürünler için kullanılan cam elyafı cinsleri Amerika’daki “S” camı; Avrupa’daki “R” camı olarak nitelenmektedir. Kompozitin mukavemetini ve rijoitligeni artıran bu cins cam elyafı havacılık, uzay ve askeri alanlarda, yüksek teknik performans gereksinimi nedeni ile kullanılmaktadır.

Tablo 2.1. Başlıca Cam Elyafı Cinslerinin Kompozisyonları

<table>
<thead>
<tr>
<th>Kompozisyonun Adı</th>
<th>A Tipi Cam Lifi (%)</th>
<th>C Tipi Cam Lifi (%)</th>
<th>E Tipi Cam Lifi (%)</th>
<th>R Tipi Cam Lifi (%)</th>
<th>S Tipi Cam Lifi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>72.0</td>
<td>64.6</td>
<td>52.4</td>
<td>60.0</td>
<td>64.4</td>
</tr>
<tr>
<td>Al₂O₃, Fe₂O₅</td>
<td>1.5</td>
<td>4.1</td>
<td>14.4</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>CaO</td>
<td>10.0</td>
<td>13.4</td>
<td>17.2</td>
<td>9.0</td>
<td>-</td>
</tr>
<tr>
<td>MgO</td>
<td>2.5</td>
<td>3.3</td>
<td>4.6</td>
<td>6.0</td>
<td>10.3</td>
</tr>
<tr>
<td>Na₂O,K₂O</td>
<td>14.2</td>
<td>9.6</td>
<td>0.8</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>B₂O₃</td>
<td>-</td>
<td>4.7</td>
<td>10.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BaO</td>
<td>-</td>
<td>0.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Polimer matriksin mekanik dayanımı, cam elyafının mekanik dayanımına oranla daha düşüktür. Takviye olayı, uygulanın yük altında, zayıf olan polimer matriksin, gerilmeleri çok daha güçlü cam lifleri üzerine aktarılması sonucu oluşur.

İyi bir kompozitte, gerilim altında bulunduğu sürecе, lif uzaması, matriksin uzamasından daha az; lif rıjetliği, matriks rıjetliğinden daha yüksek olmalıdır.

Elyaf-matriks arasında gerilim aktarımı, değişik etmenlere bağlıdır.

1. Cam lifleri üzerine kaplanan bağlayıcının matriks ile uyumu,
2. Cam elyafı takviye miktarı,
3. Cam elyafı takviye malzemesinin yönlenmesi,
4. Cam elyafı takviye malzemesinin elyaf çapı.

Cam elyafı üzerine kaplanan bağlayıcının fonksiyonlarından biri de elyaf-matriks arasında kimiyasal bir bağ oluşturmaktır. Matriks ile uyumlu olan bağlayıcı elyaf ile matriks arasında daha kuvvetli bir kimiyasal bağ oluşturacağından, matriks üzerine uygulanan gerilimin lifler üzerine daha kolay ve verimli aktarılması mümkün olur. Diğer taraftan, genel olarak, mukavemet matriks içindeki cam elyafı takviyesi miktarı ile doğru orantılı olarak yükselir. Yani, matriksin aktaracağı gerilim daha fazla cam elyafı takviyesi tarafindan karşılanır.

Cam elyafı takviye malzemeleri, devamlı ve kesikli olarak iki tıpte üretilmektedir. Devamlı cam elyafı tipi: Fitil, dokunmuş fitil, iplik, kumaş, çok katlı dokunmamış fitil
ve devamlı demetli keçedir. Kesikli cam elyafi tipleri: Kırılmış demetler, kırılmış demetten keçiler ve öğütülmüş liflerdir.

2.1.1. Cam elyafi çeşitleri

a) Fitil: Devamlı yapına sahip bir cam elyafi takviye malzemesidir. Çok sayıda delik içeren kovanlardan akan cam liflerinin doğrudan doğruya sarılması ile “Direkt Sarma Fitil” olarak üretilebiliyor gibi, daha az sayıda delik içeren kovanlardan üretilen cam elyafi demetlerin birbirine paralel olarak bükülmeden sarılması ile, “Bileşik Fitil” olarak ta üretilebilir.

Fitil ürünleri, 10-24 mikron çapında liflerden oluşur ve genellikle 1000 metre uzunluğu 600, 1200, 2400 ve 4800 gram ağrılığında olacak şekilde üretilir. Kullanım yerin ve prosesine bağlı olarak, sertlik, lifler arasında eş gerilim, kayganlık ve kolay kırpılabilme gibi farklı özellikliler fitillere kazandırılabilir. Özel olarak üretilen ve “Spun Roving” adı verilen düğümlü fitilde ana doğrultuya dik yönde takviye sağlayan ilmekler bulunmaktadır. Bunun amacı; tek yönlü takviye edilmiş pultruzyon ürünleri gibi kompozitlerde yanal mukavemeti arttırmaktır.

Fitil çeşitleri ve kullanım alanları şöyle sıralanabilir:

- Sarma Fitilleri (Direk Sarma) Elyaf sarma ve pultruzyon metodu
- Sarma fitilleri (Bileşik Fitil) Elyaf sarma ve pultruzyon metodu
- Dokuma fitilleri (Direk Sarma) Dokunmuş fitil üretimi
- Dokuma Fitilleri(Bileşik Fitil) Dokunmuş fitil üretimi
- Kırma fitilleri Püskürtme metodu
- Düğümlü Fitiller Hazır kahplama pestili üretimi
- Devamlı levha üretimi
- Pultruzyon metodu.
Genellikle “R” cami elyafından yapılmış fitillere en yaygın olarak epoksi reçine emdirlerek yapılan “Stratpreg veya Prepreg” ismi verilen bir diğer cam elyafı takviye malzemesi de elyaf sarma metodu ile yüksek mekanik dayanım aranan depo ve borularda otoklavda kaliplamak üzere kullanılmaktadır.

c) Cam elyafı iplik: Cam elyafı demetlerinin büyük ölçüde getirilmesi ile elde edilen takviye çeşididir. Genellikle dokunmuş kumaş olarak plastiklerin takviyesinde kullanılır.

e) Dokunmamış fitil: Belirli yönderde mukavemet sağlamak amacı ile tek kat veya çok kat olarak dokunmadan bir arada tutturulmuş takviye ürünleridir. Özellikle yüksek mekanik dayanım ve hassasiyet aranan havacılık ve uzay sektöründe kullanılır.

g) Kırımlı demetler: Cam elyafı demetlerinin 3-12 mm uzunlukunda kırımlı şeklidir. Termoplastik reçinelerin ve termoset reçinelerin takviyelerinde kullanılır. Kullanım alanı
ve takviye edilen reçine özelliklerine bağlı olarak, demet bütünlüğü, akma ve reçine uyum özelliklerine sahiptir.

h) Kırılmış demetten keçeler: Bu cam elyafı takviye çeşidi, 50 mm uzunluğunda kırılmış cam elyafı demetlerin, stirende çözünür bir bağlayıcı ile bir arada tutulmasından oluşmaktadır. Kullanılan bağlayıcı miktarı, proses gereklereine ve bitmiş ürün özelliklerine bağlı olarak %3-10 arasında değişmektedir. Kırılmış demetten keçeler, açık kalıplama metodu ile yapılan kalıplamalarında ve çift film arasında devamlı veya kesikli levha kalıplamalarında kullanılır.

i) Öğütülmüş lifler: Öğütme işlemi sonucunda, uzunlukları 0.1-0.2 mm'ye düşülmüş cam elyafı takviye malzemesidir. Bu liflerin çapları 10-17 mikron arasında değişir. Öğütülmüş liflerin başlıca kullanım alanı termoplastik reçinelerin ve poliüretan reçinenin takviyesidir. Kompozit’in, rijitlik, boyut stabilitiesi ve darbe dayanımı gibi özelliklerini yükseltmek için öğütülmüş lif boyu çok kısa olduğundan, bu takviye malzemesi, diğer kompozitlerin takviyesinde genellikle kullanılmaz.

Kompozitlerin takviyesinde ayrıca, devamlı veya kırılmış demetten keçe gibi dokunmamış ürünlerle, dokunmuş kumaşların bir araya getirilmesi ile oluşturulan çok kathı takviye malzemeleri de, dilikerek, iğnelenerek veya üç boyutlu preformlar halinde, özellikle reçine enjeksiyonu gibi kapalı kalıplama metotlarında kullanılmaktadır.

2.1.2. Kalıplama metotları ve kullanılan cam elyafı çeşitleri

Düşük basınçta kapalı kalıplamada, özellikle reçine enjeksiyonu; RRIM ve SRIM metotlarında cam elyafı takviyesi (keçe, preform ve bunların kombinasyonu), kalıp kapatılmadan önce belirlenmiş şekilde yerleştirilir veya cam elyafı RRIM metodunda, kalıp reçine ile doldurulmadan önce reçineye karıştırılır. Preformlar genellikle, kırpılmış fitil ve bağlayıcının bir mastar üzerine birlikte püskürtülmesi ile yada keçenin veya cam elyafı takviyesinin termoform ile şekillendirilmesiyle hazırlanır. Maçali kalıplarda basınç ile, enjeksiyon ile veya otoklavda yapılan kapalı yüksek basınç kalıplamalarında genellikle önceden kombinе edilmiş takviye ve reçine kullanılarak maliyet avantajı sağlanır.

Cam elyafı, kırpılmış demetler halinde termoset reçinelerle bir mikser ile karıştırıldığında BMC hazır kalıplama hamuru olarak; termoplastik reçinelerle ekstrüzyon bileşim makinalarında granüle bileşim olarak hazırlanır. Uzun lifli termoplastik bileşimler ise, devamlı cam elyafının reçine emdirilerek ekstrüzyon makinasından çekilmesiyle hazırlanır. Hazır kalıplama pestili (SMC) ve Keçe Takviyeli Termoplastik (GMT), tesadüfi yönlendik kırpılmış demetlerin, devamlı olarak reçine ile sıçraması ile hazırlanır.

Bazı hallerde, mukavemet değerlerinin yükseltilmesi amacı ile, makine doğrultusu boyunca devamlı fitil de ilave edilmektedir. Düz ve oluklu levhalar, boru ve tanklar ile devamlı 큐버k ve profilier sırası ile; devamlı levha kalıplama, pres kalıplama, elyaf sarma ve pultrüzyon metotları ile yapılabilir.

2.2. Beton Boru Yapım Kuralları

Beton boru; sulama, drenaj, atık su, yağmur suyu veya içme suyu taşımak amacıyla kullanılan betonun hazır bir boru elemanıdır. Beton borular, genellikle hizmet sürelerini toprak altında gömülü olarak geçirdiklerinden bu borulara meydana gelebilecek arızaların tespiti gecikebilmesi veya bu boruların çıkartılıp değiştirilmesi önemli harcamaya veya hizmetlerin aksamasına yol açabilir.
Genel olarak toprak altında şartlara ve taşıdığı akişkanların yapıtıcı etkilerine karşı daha dayanıklı olması için beton borularının iyi üretilmesi ve dayanımının arttırılmasını gerektmektedir. Beton boruların beklelen uzun ömürlerine ve dayanıklılıklarına ulaşabilmeleri için;

- Beton boruların yapımında kullanılan malzemenin iyi seçilmiş olması,
- Beton niteliklerine ve üretim sistemine uygun nitelikte beton yapımının sağlanmış olması,
- Beton kürünün borulara gerekli nitelikleri sağlayacak düzeyde olması,
- Taşıma ve stoklamann boru niteliklerini bozmayacak düzeyde olması,
- Malzeme ve üretim kalitesini denetleyecek kalite kontrol düzeninin kurulmuş olması gibi şartların sağlanması gerektmektedir (TS 3830, 1983).

2.2.1. Malzeme seçimi

Beton boruların yapımında kullanılacak agreganın temiz, sağlam, dayanıklı ve üretim kapasitesine uygun olması gerekir. İnce ve iri agregada TS 3673’e göre organik madde ve silt miktarının uygun olup olmadığını kontrol edilmelidir. Boru yapımında kullanılacak ince agreganın TS 3530’a göre belirlenen tane büyüklüğine uygun olmalıdır. Tablo 2.2’de beton boruların yapımında kullanılacak ince agreganın tane büyüklüğünün dağılımı verilmiştir.

<table>
<thead>
<tr>
<th>Elek Göz Açıklığı (mm)</th>
<th>Elek Üstünde Kalan (Ağırlıkça %)</th>
<th>En az</th>
<th>En çok</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1.25</td>
<td></td>
<td>14</td>
<td>48</td>
</tr>
<tr>
<td>0.63</td>
<td></td>
<td>37</td>
<td>70</td>
</tr>
<tr>
<td>0.315</td>
<td></td>
<td>66</td>
<td>86</td>
</tr>
<tr>
<td>0.160</td>
<td></td>
<td>84</td>
<td>92</td>
</tr>
</tbody>
</table>

İncelik modülü 2.5 - 3.0
İnce agreganın tane büyüklüğü dağılımnın iyi seçilmişi olması boru dayanımı dayanıklılığı ve su geçirimsizliğinin sağlanması için en önemli ön şartlardan biridir. Beton boruların yapımında kullanılacak iki agreganın TS 3530 uyaranca yapılacak elek analizi sonuçları Tablo 2.3'de verilen değerlere uygun olmasi gerekir.

Beton boruların yapımında genellikle TS 19'da özellikleri belirtilen PC 325 veya KPÇ 325 kullanılır. Bunların dışında üretim sistemine uygun olduğu ve borularдан beklenen nitelikleri sağladığı deneylerde kanıtlanmış diğer çimentolarda kullanılabilir. Sulfata dayanıklı çimento kullanıldığında taktirde su/çimento oranı %0.5 artırılabilir. Beton boruların yapımında kullanılacak suyun içeçebilir nitelikte ve TS 500'de beton yapımında kullanılmasına izin verilen sular, beton boruların yapımında da karışım suyu olarak kullanılabilir. Kullanılan suyun sulfat içeriği %1'den, klorür içeriği de %2'den fazla olmamalıdır.

2.2.2. Yapı metotları

<table>
<thead>
<tr>
<th>E.B.T.B. 25 mm</th>
<th>E.B.T.B. 20 mm</th>
<th>E.B.T.B. 12.5 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>En az</td>
<td>En çok</td>
<td>En az</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12.5</td>
<td>40</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>86</td>
<td>100</td>
</tr>
</tbody>
</table>

Tablo 2.3. Beton Boruların Yapımında Kullanılacak İri Agreganın Tane Büyüklüğü Dağılımı

İri agreganın en büyük tane büyüklüğü boru cidar kalınlığının %25'inden daha büyük olmamalıdır.
2.2.2.1. Kalıba dökme ve titreşimle sıkıştırma metoduyla boru yapımı

Bu metot genellikle 500 mm ve daha büyük iç çaplı beton boruların yapımında uygulanır. Kullanılan kalıplar, iç ve dış cidarları olup açılıp kapanabilen çelik kalıplardır. Yağlanmış çelik kalıplara dökülecek betonun çökmesi 8 cm’yi geçmemeli ve hava sürükleyici katki ile sağlanan hava miktarı toplam hacmin %2.5’inden fazla olmamalıdır.

Beton sürekli olarak ve düşey konumdaki kalıbın içinde eşit düzeyde yayılacak şekilde dökülmelidir. Beton dökümü süresince titreşim sürdürülmeli ve betondan hava kabarcıkları çırması sona erince kadar titreşimle sıkıştırmaya devam edilmelidir. Fazla titreşim uygulanması betonun ayrılmamasına ve bu nedenle beton kalitesinin düşmesine yol açabilir.

Kalıpların titreşirilmesinde, 2.5 m’den daha kısa kalıpların ortalarında daha uzunların ise yüksekliklerinin 1/4 ve 3/4 noktalarında, iç veya dış kalıba tutturulmuş vibratörler kullanılır. İki vibratör kullanılan kalıplarda beton seviyesi alttaki vibratörün düzeyini geçtikten sonra, alt vibratörün durdurulması ayrımsayı önleme açısından yararlı olur.

Kalıp dolduktan sonra üstten basınç uygulanarak ek bir sıkıştırma yapılabilir. Kalıp alınduktan sonra, özellikle boruların üstlerinde rötre çatıkları görülüğü taktirde, bunları ortadan kaldırmak için beton döküldükten 0-30 dakika sonra kalıba yeniden titreşim uygulanması gerekli olabilir.

Bu ikinci titreşim, betonun titreşimle yeniden plastikleşmesi mümkün olmayacak düzeyde sertleşmesinden hemen önce uygulanmalıdır. Kalıplarda harç sızması olan yerlerde agrega hareketinden doğan çizgiler meydana geleceğinden kalıpların sızdırmaz olarak yapımı önem taşmaktadır. Bu amaçla ek yerlerinde ve tabana oturduğu bölgelerde contalar kullanılarak veya bez şeritler sarılarak sızdırmazlık sağlanmalıdır.
2.2.2.2. Döner başlıklı kalıplarla üretim

Bu metotlarla her çapta beton boru üretilebilir. Bu sistemdeki boru yapım makinalarının düşey konumda duran açılır kapanır (menteseli) bir dış kalıbı bulunmaktadır. İç kalıp yerine, kalıp boyunca aşağıdan yukarıya hareket eden ve kendi çevresinde yüksek hızla dönen bir döner başlık bulunmaktadır. Beton dökümünün başlangıçında kalıbın en alta indirilen döner başlık yüksek hızda döndürülürken kurut kivrandaki harç sürekli olarak boru çapi ve et kalınlığına bağlı belirli bir hızla kalıba dökülmeye başlar. Döner başlığa düşen harç büyük bir hızla cepere doğru savrulur ve çarpmanın gücyle sıkışarak çeperde kalmır. Çeper doldukça döner başlık yukarı doğru hareket eder ve bu hareketi sırasında harcı boru yüksekliğinde eşit olarak yayıldığ gibi, aynı zamanda borunun iç yüzeyini sıvıarak düzgün çıkmasını sağlar.

Bu sistemle üretimde kullanılan beton oldukça kuru kivmanda (yeterli dönemde hızlarda sıfır çokmeli beton kullanılabılır) ve döner başlığın sağladığı sıkışma yüksektir. Dökme işlemi biter bitmez kalıp alınabilir ve taze beton boru kalıpsız olarak sertleşme ve kür işlemlerinden geçer. Bazı durumlarlarda, borunun muflu ağızının istenen dolulukta çıkmasını sağlamak için beton dökümünün başında kısa süreli bir tıtrışım uygulaması yapılmaktadır.

2.2.2.3. Tıtrışımli tokmaklamayla boru yapımı

Beton dökümü ilerledikçe kalbin dönülmesine paralel olarak sıktayıcı düzeneğin yükünü doğru çekilir ve kalıptan çıkarılır. Borunun tamamlanmasıyla, iç kalıp alınır ve taze boru dış kalıbıyla birlikte kır odasına taşınır. Yeterli kır sağlandktan sonra dış kalıp tutucuları açılır ve kalıp, ağırlığıyla borudan sırılarak boruuya serbest bırakır.

Bu sistemde dış kalıp için uygun dönme hızlarının sağlanması önemlidir. Kalbin dönme hızı ile taze betonun kalıba aşı sürtünme arasında uygun bir bağlantılı sağlanmadıkça borularda istenen kalite elde edilemez. Uygulanacak dönme hızları betonun “yanmasına” neden olmayacak en yüksek hızlardır olmalıdır. Bu kapsamda 1 ila 1.5 m uzunluktaki borular için, küçük çaplıda dakikada 40 devire, büyük çaplıda dakikada 10 devire kadar dönme hızları uygun sonuçlar vermektedir.

Bu sistemde, donatı kullanıldığı taktirde, donatı kafesinin düşük toleranslarla silindirik yapılması ve boru et kalınlığı içinde iyi merkezlenmesine dikkat edilmelidir. Aksi taktirde sıktıma düzeneğinin donatıya çarpmasıyla işçiler ve makineler açısından ciddi sonuçları olabilecek kazalar meydana gelebilir.

2.2.2.4. Savurma dökümle boru yapımı

Bundan önceki maddelerde belirtilen metotlardakinden farklı olarak, bu metotda boru kalıbı yatay tutulmakta, betonlama sırasında ve betonlanmanın bitiminden sonra belirlir hızlarda, döndürülmektedir. Bu sistemde, beton kalıbın içine verilirken kalıp kendi ekseni etrafında, yerçekimi ivmesinin yaklaşık 5 katı düzeyinde bir merkezkaç ivme sağlayacak hızda çevrilir ve böylece çevreye savrulan betonun kalıba yapışık kalması sağlanır. Kullandıları betonun TS 2871’e göre bulunan çokmesi 4 cm’den fazla olmamalı ve işlenebilirliği artırmak için hava sürükleyici katkı maddesi kullanılmamalıdır.

Kalıp doldurulurken, bazı sistemlerde kalıbı sarsan (títreşirici) bir düzenek bulunur. Bazı sistemlerde de kalıp içindeki bir merdane beton yüzeyinin düzlenmesini sağlar. Kalıba istenen miktarda beton verildikten sonra beton ağış kesilir ve kalbin dönme hızı yavaş yavaş artırılırak çeperde sıkışmayı sağlayacak üst dönüş hızına ulaşılır ve bu hızda bir süre beklenir. Üst hızda, merkezkaç kuvvetle boşlukların doldurulması
sağlandıktan, boşluklardaki su çıkarak borunun iç yüzünde toplanır. Toplanan su masta veya firçalarla boru iç yüzeyinden uzaklaştırılır.

Üst dönüş hızı bu hızda bekleme süresi ve bu hızda çıkarken uygulanan ivmenin miktarı çok önemlidir. Yüksek ivmelerde ince malzeme suyun geçeceği kanalları tıkayacağandan boru kalitesinde bozukluklar olabilir, düşük ivmelerde de enerji kullanım fazla olacağını ekonomiklik kaybolur.

Üst dönüş hızları yeterli süre uygulanmada ve su çıkış sahanamaz, fazla uygulanlığında aşırı ayrımsa oluşabilir. Uygulanacak ivme, üst dönüş hızı ve beton nitelikleri, boru çapi ve et kalınlığına bağlı olarak ve işletme koşulları göz önünde tutularak belirlenmelidir.

2.3. Bakım Metotları

Beton boruların üretiminde uygulanacak bakım (kür) metotları aşağıda belirtilenlere uygun olmalıdır. Hangi kür metodu uygulan rsa uygulansın, boru betonundaki çimento'nun yeterince hidratasyonunun sağlanmış olması gerekir.

. Atmosfer basıncında buhar kürü uygulanması,
. Su püskürme ile kür uygulanması,
. Neme doygun ortamda kür yapılıması (ıslak çuvallarla sarılarak),
. Havuzda kür yapıtırılması,
. Nem kaybını önleyici membran uygulanarak kür uygulaması,
. Havada kür uygulanması.

Bu metotlardan biri veya bir kaçı aynı anda uygulanabilir. Beton borulara uygulanan tipik bir buhar kürü süreçinin aşamaları Şekil 2.1’de verilmiştir.
Şekil 2.1. Beton Borulara Uygulanan Tipik Bir Buhar Küru Süreci

2.4. Beton Boruların Dizaynında Kırılma Mekaniği

Kırılma mekaniği, beton boruların dayanım analizinde ve dizaynında oldukça kullanışlıdır. Atık sular için boru sistemleri genellikle betondan yapılır. Gelişmiş ülkelerde alt yapı inşaatlarının önemli bir kısmının temelini teşkil etmektedir. Örnek olarak, 8 milyon insanın yaşadığı İsvyt de 84.860 km’lik atık su boruları mevcut olup ve aynı zamanda her yıl yaklaşık olarak 1000 km² lik tesis daha ilave edilmektedir. Mevcut boruların yaklaşık %80’i betondan yapılmaktadır.

Beton borularda yatırımların büyük olması daha iyi tasarım metotlarının yapılması zorunlu kılmalıdır. Bu durumda betonun kırılma dayanımında çekmenin olmadığı ve bu yüzden giderek hasara bağlı olarak kırılma esnasındaki zorlananın de dikkate alınması gereklidir. Sayısal sonuçlar, basitleştirilmiş denklemler ve standartların yer aldığı tabloları içeren kırılma mekaniği yardımcı ile elde edilmiştir.
Kirlma mekaniği analizi, standart geleneksel çevre lineer elastik kirlma teorisinin belirttiğinin aksine uygulamada etkili sonuçlar veren faydalı bir yoldur. Kirlma mekanigiinden elde edilen sonuçların doğruluğu ile ilgili geçerliliğini amaçlayan ve daha sağlıklı deneylerin yapılması sağlayan yeni ve değişik beton boru test metotları geliştirilmiştir.

Genelde çok iyi bilinen hayali kirlma modeli Hillerborg ve co-workers tarafından geliştirilmiştir. Birlesimdeki hesaplamalardan elde edilen sonuçlar, diğer analiz metotları ve deney sonuçları ile karşılaştırılarak yapılmıştır. Bu çalışma temelde güçlendirilmiş çimento ile veya bunun dışındaki borularla sınırlandırılmıştır, fakat bazı durumlarda yüklemeye esnanda kopma veya çatılamayı önleyecek olabiliyor, bur durum betonarme borular için de geçerlidir.

2.4.1. Dairesel borularda eğilme modunun boyut, şekil ve kirlma dayanımının etkisi

Genel olarak iki çeşit eğilme kirlma modu vardır. Bunlardan birincisi dairesel eğilme kirlmasıdır, (Şekil 2.2.a) burada boru uzunluğu boyunca mesnetlenmiş ve yüklenmiştir. Diğer eğilme kirlma modo ise Şekil 2.2.b'de görüldüğü gibi, kiriş eğilme kirlmasıdır. Bu durumda beton boru bir kiriş gibi mesnetlenmiş ve yüklenmiştir.

(a) Dairesel eğilme kirlması (b) Kiriş eğilme kirlması

Şekil 2.2. Beton Borularda Eğilme Çeşitleri
Şekil 2.3'de eğilmenin iki modu için f_r eğilme mukavemeti değerleri gösterilmektedir. f_r eğilme mukavemeti değeri klasik lineer elastik teoriye göre hesaplanan maksimum yüklemektedeki maksimum gerilmektedir. f_r mukavemetine göre, normalize edilen f_t mukavemeti betonun çekme mukavemetine ve d_t/l_{ch} oranına ve borunun normalize edilen boyutuna karşı gösterilmiştir. Burada l_{ch} malzemenin gerçek boyudur ve $l_{ch} = \frac{E \cdot G_f}{f_t^2}$ bağıntısıyla hesaplanır (Gustafsson, 1985). Bu formülde sırasıyla;

$$l_{ch} = \text{Malzemenin gerçek boyunu},$$
$$E = \text{Betonun Elastisite Modülü},$$
$$G_f = \text{Betonun kırılma enerjisini},$$
$$f_t = \text{Normalize edilmiş mukavemetini},$$
$$f_r = \text{ Eğilme mukavemetini göstermektedir}.$$

Şekil 2.3'de verilen hesaplama sonuçlarına göre açıkça görülmektedir ki normal eğilme mukavemetindeki dairesel eğilme değeri kiriş eğilme mukavemetinden daha yüksektir. Genellikle boruların deneyleri dairesel eğilmeler için yapıldığından mukavemetlerdeki bu farklılıklar dizaynında da çok önemli olmaktadır.

Şekil 2.3. Bir Borunun Normal Eğilme Dayanımındaki Değişimi
Ayrıca Şekil 2.3 özellikle dairesel eğilme durumunda bir boyut etkisini göstermektedir. Betonun kırmılma enerjisinin etkisi G_f, boyutun tersine ($d_i^{1.4}$) e eşittir. $G_f = 0$ ifadesi $f_d/f_e = 1$'i vermektedir. Betonun çekmekte kırmılma tokluğu tipik olarak $0.2 \leq d_l/l_d \leq 52$'dir. Bu durumda boruların yük taşıma kapasitesinde büyük öneme sahiptir. Bir borunun geometrik şeklinin etkisi, t/d_i oranı ile gösterilmektedir.

Şekil 2.3’te göre ilişkiler, literatürde bulunan değişik test sonuçları ile iyi bir uyum sağlamaktadır (Gustafsson, 1985). Küçük bir ek deneysel çalışma Tablo 2.4’de görüldüğü gibi benzer iyi bir sonuç vermiştir. Değişik eğilme gerilmesi deneysel sonuçlarından teorik olarak tahmin edildiği gibi gerçek betonun çekme gerilmesi hemen hemen sabittir. Kaydedilen f_r değerlerinden f_r' nin değerlendirilmesi $l_d=380$ mm kabul edilerek elde edilmiştir. Bu kabul betonun kırmılma mekaniği deneysel esas alınarak yapılmıştır (Petersson, 1981). Çatlag açıklığına karşı hayali çatlag modelleri tarafından hesaplanan $\sigma-w'$ nin eğrisi, yanı çatlag açıklığına karşı kohezyon mukavemeti Petersson'un önerisine göre bi-lineer olarak kabul edilmiştir.

Tablo 2.4’de verilen sonuçlar bir borunun mukavemetini betonun silindir yarma deneylerinden ve buna karşılık betonun çekme mukavemetini boru deneyleri sonuçlarından tahmin edilebileceğini göstermektedir.

Tablo 2.4. Deneysel Olarak Elde Edilen Eğilme Mukavemeti ve Buna Karşılık Gelen Kırmılma Mekaniği Kullanılarak Tahmin Edilen Betonun Çekme Mukavemeti

<table>
<thead>
<tr>
<th>Boru Geometrisi</th>
<th>Eğilmenin Şekli</th>
<th>Eğilme Mukavemeti</th>
<th>Çekme Mukavemeti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cidar Kalmalığı (t:mm)</td>
<td>Boru İç Çapı (d:mm)</td>
<td>f_r(Mpa)</td>
<td>f_t(Mpa)</td>
</tr>
<tr>
<td>34</td>
<td>100</td>
<td>Kiriş</td>
<td>7.4</td>
</tr>
<tr>
<td>34</td>
<td>150</td>
<td>Kiriş</td>
<td>6.8</td>
</tr>
<tr>
<td>34</td>
<td>225</td>
<td>Kiriş</td>
<td>6.6</td>
</tr>
<tr>
<td>34</td>
<td>225</td>
<td>Daire</td>
<td>11.0</td>
</tr>
<tr>
<td>55</td>
<td>400</td>
<td>Daire</td>
<td>9.6</td>
</tr>
</tbody>
</table>
2.4.2. Düz tabanlı borularda yük dağılımı etkisi

Düz tabanlı donatısız beton borular (Ingwersen ve Thygesen, 1994) yıllarca Şekil 2.4’de gösterilen A düzeneğine göre test edilmiş, deneysel yükleme kapasitesi, yük dağılımı için yükleme kapasitesi, C, hesaplanmıştır.

A yüklemesinden C yüklemesine kadar dizaynda kullanılan dönüştürme faktörü lineer elastisite teorisine göre hesaplanmıştır. C yüklemesi A yüklemesinden çok farklı olduğundan dolayı, yakın zamana kadar elastik dönüştürme faktörlerinin güvenilir olup olmadıkları tartışıldığı için normal olarak iç çapi 800 mm olan aynı borular deney düzeneği A ve alternatif olarak deney düzeneği B’ye göre deneyler yapılmıştır. Elastisite teorisine göre \(P_B/P_A = 1.21 \) olacaktır. Ancak Tablo 2.5’de \(P_B/P_A = 1.01 \) alınmıştır (Olesen ve Pedersen, 1991).

![Şekil 2.4. Deney Düzeneği A, B ve 800 mm İç Çaplı (C) Bir Boru İçin Yük Dağılımı](image)

Tablo 2.5. İç Çapı 800 mm Olan Borular İçin Elde Edilen Deney Sonuçları

<table>
<thead>
<tr>
<th>Yükleme</th>
<th>Kırılma Yükleri (kN/m)</th>
<th>Ortalama Yük (kN/m)</th>
<th>Standart Sapma (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>174 180 175 179</td>
<td>173</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>171 187 179 181</td>
<td>178</td>
<td>7</td>
</tr>
</tbody>
</table>
Şekil 2.3’de deney sonuçlarını kırılma mekанизi ile açıklayabilmek için sonuç elamanlar metodu uygulanmıştır (Dahlinom ve Gustafsson, 1995). Dairesel boruların hayali kırılma modelinin ayrık çatlak uygulaması çalışılmış, düz tabanlı borulara ise aynı modelin çatlak uygulaması kullanılacak çalışılmıştır.

Tablo 2.6’da σ-ε eğrisi tek bir doğru kabul edilerek ve $f_r=2,85$ Mpa alnarak elde edilen sonuçlar verilmiştir. 2,85 Mpa çekme mukavemeti değeri, $l_{ch}=4,30$ mm olduğu zaman A yüklemesi için elde edilen deneySEL sonuçlara uygun olduğundan dolayı seçilmiştir.

Elde edilen sonuçlar betonun kırılma sertliğinin P_B/P_A dönüşüm faktörüne etki ettiği göstermektedir ve bu kısmen de olsa Tablo 2.6’da verilen deney sonuçlarından açıklanabilir. Tablo 2.7’de değişik l_{ch} değerleri için yük dönüşüm faktörü C/B için kırılma yükü değerleri verilmiştir.

Tablo 2.6. $f_r=2,85$ Mpa ve Değişik l_{ch} (= $E . G_{dr} / f_r^2$) Değerleri İçin Hesaplanan Kırılma Yükleri (kN/m)

<table>
<thead>
<tr>
<th>Yükleme</th>
<th>l_{ch}= 0mm</th>
<th>260 mm</th>
<th>430 mm</th>
<th>∞ mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>80</td>
<td>147</td>
<td>176</td>
<td>389</td>
</tr>
<tr>
<td>B</td>
<td>96</td>
<td>168</td>
<td>190</td>
<td>404</td>
</tr>
<tr>
<td>B/A</td>
<td>1,21</td>
<td>1,14</td>
<td>1,08</td>
<td>1,04</td>
</tr>
</tbody>
</table>

Tablo 2.7. $f_r=2,85$ Mpa ve Değişik l_{ch} Değerleri İçin Yük Dönüşüm Faktörü C/B İçin Hesaplanan Kırılma Yükleri

<table>
<thead>
<tr>
<th>Yükleme</th>
<th>l_{ch}= 0 mm</th>
<th>260 mm</th>
<th>∞ mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>96</td>
<td>168</td>
<td>404</td>
</tr>
<tr>
<td>C</td>
<td>121</td>
<td>205</td>
<td>493</td>
</tr>
<tr>
<td>C/B</td>
<td>1,251</td>
<td>1,223</td>
<td>1,221</td>
</tr>
</tbody>
</table>
Boruların genel deformasyonları Şekil 2.5'de gösterilmiştir. Şekil 2.6'da görüldüğü gibi beton maksimum yük ulaştıran çatlamaya başlar. \(\lambda = \infty \) için Tablo 2.6 ve Tablo 2.7'de ki ideal plastisite teorisinde limit yük analizi uygulanarak elde edilmiştir. Sonuçlardan anlaşılacağı gibi betonun kırılma mekaniği özelliklerinin etkisi dönüşüm faktörünün elde edilmesinde dikkate alınmaktadır. Ancak alternatif olarak C yüklenmesinde dönüşüm faktörü \(\lambda \) değerinden etkilenmediği için değişik her deney düzenesi hazırlamak mümkündür. B yüklemesi düzenesi örneğinde olduğu gibi 800 mm iç çaplı ve aynı zamanda büyük borular için değişik hesaplamalar önerilmiştir. Bundan dolayı gelecekteki deneyler B düzeneğine göre yapılabilir.

Şekil 2.5. Sonlu Elemanlara Ayrılış Bir Parçanın A Yüklemesi Altında Meydana Gelen Deformasyon ve Çatlama Modeli.

Şekil 2.6. Yük-Deplasman Eğrisi
Tablo 2.4'de Aynı betondan yapılmış değişik daireel borular için elde edilmiş deneySEL sonuçlar lineer olmayan kırılma mekaniği modeli ve hayalî çatıtlak modeli ile karşılaştırılmıştır. Tablo 2.8'de aynı deney sonuçları diğer deney sonuçları ile karşılaştırılmıştır. Geleneksel lineer elastik kırılma teorisi ve Weibull teorisi lineer elastik kırılma mekaniği dikkate alınabilecek uzunlukta daha önce oluşan keskin çatıklardan dolayı borularla uygulanmaz.

Plastisite teorisi kullanıldığında gerilme oranı \(f_c/f_t = 12 \) olarak kabul edilmesi ile betonun basınç ve çekmede lineer plastik olarak davranış kabul edilmştir. Yalnızca çekme uygulandığında \(f_c/f_t = 12 \) için hemen hemen aynı sonuçlar elde edilmiştir. Weibull teorisinin kullanılması, borunun hacminin kırılma ihtimaline göre integralin alınmasını gerektirir. Buradaki değerlendirmede Weibull parametresi \(m = 14 \), buna karşılık gelen boru içinde betonun mukavemetinin değişimi \(%10 \) olarak alınmıştır. Hayalî çatıtlak modeli ile değerlendirmede \(l_a = 380 \) mm olarak kabul edilmiştir. \(l_a \)’nin bu değeri beton karışımda

Tablo 2.8. Deneysel Eğilme Mukavemetleri ve Buna Karşılık Gelen Değişik Teorilerden Tahmin Edilen Betonun Çekme Mukavemeti

<table>
<thead>
<tr>
<th>Boru Geometrisi</th>
<th>Eğilmenin Şekli</th>
<th>DeneySEL Eğilme Mukavemeti</th>
<th>Değişik Teorilere Göre Elde Edilen Çekme Mukavemetleri (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cidar Kalmılığt (mm)</td>
<td>Boru İç Çapı (mm)</td>
<td>Eğilme Mükavemeti (Mpa)</td>
<td>Elastisite</td>
</tr>
<tr>
<td>34</td>
<td>100</td>
<td>Kıiriş</td>
<td>7.4</td>
</tr>
<tr>
<td>34</td>
<td>150</td>
<td>Kıiriş</td>
<td>6.8</td>
</tr>
<tr>
<td>34</td>
<td>225</td>
<td>Kıiriş</td>
<td>6.6</td>
</tr>
<tr>
<td>34</td>
<td>225</td>
<td>Dairesel</td>
<td>11.0</td>
</tr>
<tr>
<td>55</td>
<td>400</td>
<td>Dairesel</td>
<td>9.6</td>
</tr>
<tr>
<td>Ortalama Değer</td>
<td>8.3</td>
<td>2.8</td>
<td>7.5</td>
</tr>
<tr>
<td>Sapma (%)</td>
<td>24</td>
<td>6</td>
<td>26</td>
</tr>
</tbody>
</table>

Tablo 2.8'den ve bir çok benzer değerlendirmelerde lineer olmayan kırılma teorisi (FCM) beton boruların dizayında kullanılan teoriler içerisinde ki en iyi teoridir. Şunu da unutmamak gerek ki donatışsız olarak yapılan borular için ideal plasticite teorisi sürpriz olarak sürekli iyi sonuçlar vermiştir. Ancak boyut etkisi analiz edilemez ve temel direkt çekme mukavemetinden yükleme kapasitesini tahmin edildiği zaman çok yüksek değerler elde edilebilir. Weibull teorisi boyut etkisini tahmin etmesine rağmen kötü sonuçlar verdiği görülmüştür. Geleneksel teorilerin kötü sonuçlar verdiği tespit edilmiş ve sürpriz olarak kötü tahminler verdiği de görülmüştür.

Son 10 yılda elde edilen bilgilerden görülmüş ki temel malzeme parametrelerinden beton boruların gerçek yükleme kapasitesini tahmin eden herhangi bir gerçek teoride kırılma mekaniği dahil edilmemiştir. Aynı zamanda lineer elastik kırılma mekaniği de uygulanmamaktadır. Bunun yerine bazı lineer olmayan modellerden hayali çatlama modeli kullanılmaktadır.

Bugün mevcut olan lineer olmayan kırılma modelleri dizaynda faydali olmasına rağmen, onlar betondaki mukavemet ve çekme plasticite sertliğinin dikkate alınmasına göre kesinlikle geliştirilebilir ve daha da iyileştirilebilir.

Kırılma mekaniği metotlarının dizayn hesapları çalışma kodlarının modernizasyonuna ek olarak üretilen borularda kullanılan betonların kırılma özellikleri hakkında bilgiye ihtiyaç gösterir. Çok yüksek kalitede lifli öngerilmeli beton kullanıldığı
zaman G_t değeri hakkındaki bilgi yeterli değildir, aynı zamanda çekme gerilme deformasyonunun şekli de bilinmelidir.

Eğer dizayn durumunda lineer olmayan analiz sonuçları mevcut değilse ideal plastisite teorisinden faydalanılabılır. Bir borunun yükleme kapasitesi bilindiğinde plastisite teorisi ile, diğer boruların ve farklı olarak tahmin edilen yüklü boruların yük kapasitesi bulunabilir. Geleneksel lineer elastisite kırılma teorisi, beton boruların dizaynı ve uygulamalı mukavemet analizi dikkate alındığında kullanılmamaktadır.

2.5. Lifli Betonarme Malzeme Deneyleri İçin Metotlar ve Tavsiyeler

Lif katkılı betonarme malzemelerin en büyük avantajı olan artan kırılma dayanımı, basınç ve çekmedeki gerilme birim deformasyon eğrileri altında kalan alanlar ve eğilmede yük-deformasyon eğrileri ile belirlenebilir. Ancak kopma dayanımındaki bu değerlendirmeler uygun deneySEL tekniklere bağlıdır.

Küp ve prizma şeklindeki deney numuneleri için gerilme birim deformasyon eğrilerinin şekilleri konusunda serbest ve sabit üç şartları ve farklı birim deformasyon ölçüm cihazlarının etkileri denenmiş ve direkt çekme ve eğilme deney teknikleri de göz önüne alınmıştır.

Sade ve geleneksel olarak yapılan betonarme deney teknikleri yıllarca kayda değer gelişmeler göstermiştir ve bunlar lif katkılı çimento kompozitleri için uygun olabilirler. Bununla birlikte lif katkılı betonların maksimum yüke ulaşmadan önce ve sonra genişçe çatlamayı devam etirme yetenekleri vardır.

Bundan dolayı kompozit malzememin gerçek davranışları elde edilecekte deney makinalarının karakteristiklerinin etkileri ve ölçüm cihazlarının deformasyonları da göz önüne alınmalıdır.
2.5.1. Basınç deneyi

Küp ve prizma şeklindeki betonun deformasyonu ve gerilme konusundaki test makinelerinin karakteristikleri ile ilgili önemli birçok datalar son yıllarda tespit edilmiştir.

Kullanılan makinalarla ilgili karakteristikler aşağıda belirtilmiştir:

1. Uç şartların tipi (sabit, mafsalli, v.b.),
2. Yükleme plakalarının eksen durumu,
3. Eğer kullanılmışsa kullanılan yağın tipi ve bilyeli yatağın büyüklüğü,
4. Yükleme çerçevesinin sağlığı, özellikle eksene dik yönde,
5. Makine reminin ve numunenin deney makinesi çerçevesine dik yöndeki durumu ve parçaların ayarlanması.

Beton basınç numunelerinin kırılma şekilleri aşağıdaki değişik sebeplerden kaynaklanmaktadır.

1. Kenarların kademeli dökülmesinden,
2. Merkezdeki şişmeden,
3. Numunenin bir kısmında veya tamamında büyüyen makeslama çatlamasından,
4. Bir tarafta yatay çekme çatlacıkları oluşurken, diğer tarafta basınç kırılmasından kaynaklanmaktadır.

2.5.2. Basınçta üç şartları etkileri

2.5.2.1. Mafsalli uçlar

Eğer küresel yataklar iyice yağlanmış ise numunenin yüzeyleri ve pres tablaları arasındaki bütün temas, genellikle yüklemeye başlar başlamaz sağlanır. Kırlımda yüklemeye tablalarının eğilmesi numunenin kırlımsı tarafına doğru meydana gelir.

Bundan dolayı diğer taraftaki yük azalarken ve bazı durumlarda çekme kırlımsı meydana gelirken, kırlımsız diğer taraf sıkıştırılmaya devam eder. Ölçme tekniği nasıl yapılrsa yapılın, diğer tarafta basınç birim deformasyonu azalarken, sıkıştırılmış taraftaki birim deformasyon artar ve ortalama birim deformasyon değeri kompozit davranış tamamıyla yansıtmaz.

2.5.2.2. Sabit uçlar

Deney makinesinin sağlam olduğunu kabul etmek şartıyla pres tablaların eğilmesi önlenildiğinden dolayı deney numunesinin uçları üniform olarak sıkıştırılmalıdır. Bir veya birkaç yüzeydeki birim deformasyonlar deney numunesi içerisinde çatlık yayılması ve birim uzama ölçüm tekniğine bağlı olarak değişmesine rağmen bütün yüzeyler için tüm birim deformasyonlar aynı ve sıkıştırılmış olmalıdır.

Ancak pres tablası ile numune arasındaki yüzeyler birbirine paralel değil ise yüklemeye başladığı zaman tüm yüzey boyunca temas sağlanmaz, bundan dolayı ölçülen bütün birim deformasyonlar (pres tablalar arasındaki hareket) üniform ikten, numunede farklı deformasyonlar meydana gelmektedir. Bu da numunenin erken kırlımsına neden olabilir ve bu nedenle deney numunesi ön yüklemeden sonra kilitlenebilen bir eğilme plakasına sahip olmalıdır ve sonra bütün yük durumları için sabit kalmalıdır.
2.5.2.3. Plaka sürünmesi

Çelik liflerin ilave edilmesi ile, beton basınç gerilmesindeki artmanın sebepleri aşağıda açıklanmıştır.

1. Lifler numunenin dikey olarak genişlemesini önler ve bundan dolayı çatlakların yayılmasını engeller.
2. Numunenin yüklenen yüzeylerinde oluşan lifler, numune ve pres tablaları ararındaki sürünme kuvvetlerinin artmasına sebep olur. Bu son etki özel uç plakaları (yastıklar) veya daha basit MGA yastıkları kullanılarak minimize edilebilir.

2.5.3. Basınçta gerilme-birim deformasyon eğrileri

Gerilme-birim deformasyon eğrilerine aşağıdaki sebepler etki edebilir:

1. Birim deformasyon ölçüm tekniği: Tablo 2.9'da bazı tipik teknikler verilmiştir.
2. Deney makinesinin sağlığı: Yükleme esnasında uniform olmayan makine kolonlarının uzaması ve şahmetdannın eğilmesi numunenin farklı yüzeylerinde değişik deformasyonlar yapmasına sebep olabilir.
3. Uç şart.
4. Numune şekli ve test edilen malzeme tipi: Bu etkilerin bazıları LVDT iletim sistemlerinin başka yerde (Hughes, 1977) tarif edildiği gibi uç yüzey üzerinde birim deformasyonunu ölçmek için kullanıldığı beton küp ve prizmalar üzerinde yapılan deneyselde gösterilmiştir.

Küp numuneler için gerilme-birim deformasyon eğrileri Şekil 2.7'de gösterilmiştir “b” eğrisi, 0,76x24 mm’lik kivrılmış çelik liflerle yapılmış 102 mm’lik Küp numunelerin kenar yüzeylerine özel yazıtırılara tutturulmuş LVDT iletim sistemleri yolu ile 50 mm’lik Küp numunelerin merkezi üzerinde ölçülmuş birim deformasyon değerini gösterirken, “a” eğrisi de toplam birim deformasyonu göstermektedir.
Tablo 2.9. Tipik Birim Deformasyon Ölçüm Teknikleri

<table>
<thead>
<tr>
<th>Özellikler</th>
<th>Dial ölçüm aletleri veya LVDT iletim sistemleri tarafından ölçülen toplam birim deformasyonları</th>
<th>Yüzey Birim Deformasyon Ölçümü</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ERS Ölçüm Aleti</td>
<td>Demec ölçüm aleti</td>
</tr>
<tr>
<td>Ölçülen Numunenin Gerçek Deformasyonu (maksimum yıkle kadar)</td>
<td>Hayır</td>
<td>Evet</td>
</tr>
<tr>
<td>Çatlağa rağmen ölçmeye devam edildiği</td>
<td>Evet</td>
<td>Hayır</td>
</tr>
<tr>
<td>Makine eğilmesi tarafından etki etmeyen ölçüm</td>
<td>Hayır</td>
<td>Evet</td>
</tr>
</tbody>
</table>

Şekil 2.7. Basınçta 102 mm'lik Küp Numuneler İçin Gerilme-Birim Deformasyon Eğrileri.
Maksimum yük ulaştıktan sonra ölçülen birim deformasyon üzerinde çatlakın etkisi “b” eğrisinde açıkça görülmektedir. Diğer taraftan “a” eğrisi daha düzgün bir azalma gösterir. Hem “c” hem de “d” eğrileri “a” eğrisinde olduğu gibi toplam birim deformasyonla ilgilidir.

Ancak “d” eğrisi için kupün yüklenmiş yüzeyleri diğerleri gibi düz değildir, fakat sadece firçalanmış ve yıkanmıştır. “c” eğrisi ile karşılaştırıldığında “d” eğrisi için kayda değer başlangıç deformasyonu toplam birim deformasyonlarının başlangıç yataklanmasıne kadar hassas olduğunu gösterir. “c” ve “d” eğrileri için kullanılan kup numunelerine 0,5x49 mm’lik kırılmış çelik lifler katılarak 30 günlük numuneler elde edilmiştir.

Şekil 2.8’de, 0,25x25 mm’lik çelik lifler katılmış (30 günlük) prizmalar için, gerilme-toplam ortalama birim deformasyon eğrisi gösterilmektedir. “a” da prizmaya ön yüklenme yapıldıktan sonra her iki tabla kilitlenir, oysa “b” için tüm deney boyunca bir tabla serbest bırakılmıştır.

Kilitlenmiş yatağın dönmesinin etkisinin fark edilmesi deney makinesinin sağlamlığının etkisiyle ilgilidir. Küresel yatağın dönmesinin sonucunda deney numunelerinin bir tarafından direncin aniden düşmesi ortalama birim deformasyonun an artmasına neden olabilir.

Numunenin bir yüzü çok bozulduğu zaman ve yüksek bir şekilde azaldığı zaman en büyük dayama sahip olan yüz bu karşılıyabilir ve dönmeden önce deformasyondan biraz farklı olabilen ortalama birim deformasyon değeri ile kararlı bir durum sağlanabilir.

Hatta çok sağlam bir makinede bile mafsallı bir ucun ani dönüşme gözlenen gerilme-birim deformasyon eğrisi altında kalan alanda hatalar oluşturacağı açıklar. Ancak, orta sağlamluktaki bir makine için bu hata gözlenen bu alanda çok fazla azalmaya neden olabilir.
2.5.4. Direkt çekmede deney teknikleri

Normal betonun direkt çekme gerilmesini belirlemek için kullanılan genel teknikleri şunlardır:

1. Makaslama hareketi vasıtasıyla iki sağlam pres levhallarının yüzeyleri yoluyla uygulanan dikey bir kuvvetle sürünme çeneleri tarafından tutulan uniform bir prizma (Johnston, 1968).
3. Yapılandırılmış üç levhalar ile yüklenen dairesel veya dikdörtgen kesitli numuneler (Hughes, 1965).

Şekil 2.8. Basınç Altında (30 günlük) 300x100x100 mm’lik Prizmalar İçin Gerilme-Ortalama Birim Deformasyon Eğrileri.
Numunenin yüklenmesi, genellikle ya yuvarlak soket mafsal veya universal bir mafsal kullanılarak yapılır.

Yukarıda belirtilen tekniklerin dezavantajları aşağıda belirtilmiştir.

4. Çatlamadan sonra ölçülen birim deformasyon gerçek deformasyon ölçüm cihazına ve numune uzunluğuna bağlıdır.

Şekil 2.9. Konik bir silindir boyunca farklı pozisyonlarda ölçülen birim deformasyonları gösterir ve (4)’e bağlı olarak meydana gelebilecek değişimleri gösterir. Çatlamamış bir malzeme için uniformal özellikler kabul edilmek şartı ile aşağıdaki durumlar beklenebilir.

a. Şekil 2.9’da gösterilen 3 numaralı bölge için çatlık genişliği dahil olduğu için toplam uzama daha büyük olacaktır. Fakat bu boy için ortalama birim deformasyon dikkate alındığında toplam uzama (1) ile gösterilen bölgeden daha küçük olacaktır ve (4) ile gösterilen bölgeden farklı olacaktır.

b. (2) numaralı bölge için uzama çok küçük olacak ve çatlık bölgesindeki liflerin verimine bağlı olacaktır. Verim düşük ise ölçülen uzamada düşük olacaktır.
c. (5) numaralı bölgesinde oluşan toplam uzama değişken bir kesit üzerinde ölçülüğü için bu ölçüm yetersizdir.

2.5.5. Çekmede gerilme-birim deformasyon eğrileri

Çatlamadan önce kesit boyunca üniform gerilme dağılımı, çatlamadan sonra daha kompleks bir hal alır ve üç şartlara bağlı olarak Şekil 2.10’da gösterilenlerden biri kabul edilebilir. Çatık, kesit boyunca ilerlerse yükleme eksantrikliği mafsal üç şartları için artar. Bu artan eksantrikliği sabit üç şartları kullanılarak önlenebilir ve gerilme uygulanan yük tüm kesit alanına bölündükten bulunabilir. Bundan dolayı numune için tolerans limiti ve betonun üniform olmamasını sağlamak için başlangıç yüklemesi için mafsalli uçların kullanılması önerilir ve bunlar daha sonra sabit üç şartlarını sağlamak için bağlanır. Örneğin 3 ve 4 numaralı bölgesindeki ölçümler üniform merkez uzunluğu için ortalama birim deformasyon değerini ve bütün gerilme-birim deformasyon egrisinin elde edilmesini sağlayabilir.

Şekil 2.9. Çatlık Bir Numune İçin Mükün Olan Ölçme Pozisyonları
Şekil 2.10. Sabit ve Mafsalı Uç Şartları İçin Çatlamış Bir Kesit Boyunca
Mümkün Olan Gerilme Dağılması

2.5.6. Eğilme deneyi

Sapmayı elde etmek için değişik teknikler, tabla başlı hareketinin ölçümünü, kirişin merkez sapmasını ve diğer durumları kapsamaktadır. Fakat bunlar araştırmalarda açıkça belirtilmemiştir. Ölçme teknikleri benzer 100×100×500 mm’lik beton kirişleri için Yük-deplasman egrilerinin başlangıç eğimi için değişik bilim adamları farklı şekilde açıklamışlardır. Tablamin hareketinden elde edilen ucute bir noktalarındaki yükleme sapmaları için merkezdeki maksimum olmayan sapmadan, iki nokta yüklemesinin ortalama sapması temsil edebilir. Merkezdeki sapma ölçüldüğü zaman, düzeneğin sapması (mesnetlerdeki gibi) ihmal edilmiştir. Kullanlabilen teknikler (küçük kirişler için) kirişlerin ya üstünde, ya altında yada mesnetler arasındaki direkt ölçülen sapmaları gösterebilir. Daha sonra güvenilebilirin bağlı sertlik değerleri yük-deplasman egrilerinin altında kalan alanlardan elde edilebilir.

2.5.7. Eğilme çatlama gerilmesi

.. Lif katkılı çimentolar ile elde edilen diğer önemli bir avantaj kırılma gerilmesini artırmaktır. Fakat buradaki uzama tartışma konusudur. Yük-deplasman egrisinin lineerliğinden elde edilen başlangıç sapması genellikle ilk çatlama gerilmesi olarak kabul edilmiş ve bu aşamada o genellikle çıplak gözle seçilemez. Diğer konular birim-
deformasyonda ki değişiklikler, ultrasonik çarpmada zamanı ve nötür eksen pozisyon eğrilerini kapsar.

İlk çatlak gerilmesinde üç kata kadar lif ilavesine bağlı artmalar, daha önceki görüşleri doğrulayacak bir şekilde rapor edilmiş, fakat diğer bulunularla bir zıtlık göstermiştir. Bu zıtlıklar önce sapma ölçüm tekniğinin doğruluğuna ve ikinci olarak lineer olmayan noktaların değerlendirmeinesine bağlantılıdır.

Yük-deformasyon eğrilerinin elde edilmesinde önerilen yöntemler aşağıda verilmiştir.

1. Basınç deneyinde bütün yükleme şartlarında pres tablolarından birinin sabit olması ile birlikte deney makinesinin de sağlam olması gerekir. İkinci tablının yük altında başlangıçta eğilme kapasitesi olmalıdır, fakat daha sonra bu tabla sabitlenebilir. Deney boyunca numunenin bütün yüzeylerinde üniform birim deformasyonların ölçülmesini sağlayabilir.

2. Çekme deneyinde numunenin üniform kesit boyu üzerinde ölçülebilir birim deformasyonlar ile basınç deneyinde olduğu gibi sağlam bir deney tekniği kullanılamalıdır. Başlangıçta yüklemede herhangi bir eksantriklik mafsal uçlara yok edilebilir.

3. Eğilme deneyleri için sapmalar, açıkça belirlenebilir ve ilk çatlama gerilmesini daha hassas olarak elde edebilmek için ölçümlerin numune üzerinden direkt olarak
yapılması gerekir. Yük-deformasyon eğrisinin başlangıçtaki lineerlikten sapması dikkate alınmalıdır.

2.5.8. Önceden dökülmüş beton boruların dayanımı ile ilgili konular

Yeralına gömülüms beton borular için çok iyi dizayn metotları oluşturulmuştur, fakat bunların dayanımı gereken önem verilmemiştir. Bir borunun dayanımı onun hidrolık ve yapısal fonksiyonları kadar önem arzeder. Sağlam bir boru aşağıdaki üç değişkeni ihtiva etmektedir. Bunlar,

1. Gereken performans,
2. Önceden dökülmüş beton borunun özellikleri,
3. Çalışma ve bakım şartları.

Bir boru malzemesinin dayanımı onun muhtemel yapısal ve hidrolık fonksiyonlarının çalışma kapasitesi kadar önemlidir. Bir borunun kabul edilebilir bir ekonomik süre için gerekli olan performansı sürürebilmesi temel bir mühendislik problemidir.

Bu zamanda tamamen kimyasal işlemlere ve fiziksel aşınmalara karşı koyacak hiç bir malzeme yoktur. Beton da bunların dışında değildir. Fakat normal dış şartlar dikkate alındığında takdirde çok uzun bir ömrü vardır. Beton boru hatları mükemmel bir dayanıma
sahiptir. Boru hatları sıcaklığın çok az değiştiği atmosferik şartların oluşması ve büyük bir oranda azaldıği yerin altındadır. Atmosfer şartlarının oluştuğu ve oluşmadığı yerde dökülen beton için hasar oranlarını ve laboratuvar sonuçlarını karşılaştırmak doğru değildir.

3. KAYNAK ARAŞTIRMASI

Son 20 yıldan beri lif katlı betonların kullanımında hızlı bir gelişme olmuştur. Zamanla yeni lifler geliştirilmiş ve asbest liflere alternatif olarak daha yaygın lifleri bulmak için geniş bir araştırma yapılmıştır. Spesifik olarak asbestli çimento ürünlerinin yerini alabilecek lifli malzemelerden cam elyafı katlı lifler üzerinde detaylı bir şekilde çalışmalar yapılmıştır.

Lifli betonun ticari kullanımının yaygınlaşması bazı sahalardaki uygulamalarında yıllar sonra problemleri ile birlikte ortaya çıkmış ve bunun sonucu olarak da lifli beton malzemelerinin performansını tespit etmek için bazı deney metotları geliştirilmiştir.

Lifli beton teknolojisindeki bu gelişmelerle aynı zamanda kırılma mekaniği ve kırılma özelliklerinden hareketle çimento bileşimini karakterize edecek bir çok hamleler atılmıştır. Lineer-elastik ve elasto-plastik çatırmekaniklarının ikisi de lif birleşimlerinin kırılma özellikleri tanımlamak için uygulanmıştır.

Lifli betonun iyileştirilmiş mukavemeti ve darbe mukavemeti dikkate alınabilecek iki özelliğidir. Beton teknolojisinde kırılma mekaniği deneylerinin uygulanması lif katlı beton malzemelerinin iyileştirilmiş mukavemetlerinin değerlendirilmesinde çok faydalı olmuştur. Tokluk göstergeleri çatlama sonrası dayanımı verirken, kırılma dayanımı ve kesme mukavemeti çatla başlangıcına olan direnci vermektedir (Barr, 1985).

Deneyde kullanılan bütün numune boyutları ve çentik-derinlik oranları çalışılmış olmasına rağmen kırılma parametreleri deney numunesi geometrisinden bağımsız olduğundan dolayı hep birlikte değerlendirilmiştir. Araştırma trava kullanılan ikinci standart kompakt çekme deney numunesi Şekil 3.3’de gösterilmiştir. Kompakt çekme numunesinin temel avantaji eğilme numunesi ile karşılaştırıldığında daha sağlıklı sonuçlar
vermesidir. Bu araştırmada kullanılan Mod II deney numunesinin geometrisi Şekil 3.4'de gösterilmiştir.

Eğilme numunesi için gerilme yoğunluğu faktörü (K) aşağıdaki ifadede verilmiştir (Baar B.İ.G. vd. (1985)).

\[
K = \frac{3P_L}{B.W^{3/2}} \left[1.93x \left(\frac{a}{w} \right)^{1/2} - 3.07x \left(\frac{a}{w} \right)^{3/2} + 14.53x \left(\frac{a}{w} \right)^{5/2} - 25.11x \left(\frac{a}{w} \right)^{7/2} + 25.86x \left(\frac{a}{w} \right)^{9/2} \right]
\]

Kompakt çekme numunesi için gerilme yoğunluğu faktörü (K₁) değeri

\[
K_1 = \frac{P}{B.W^{1/2}} \left[29.6x \left(\frac{a}{w} \right)^{1/2} - 1.85x5x \left(\frac{a}{w} \right)^{3/2} + 665.7x \left(\frac{a}{w} \right)^{5/2} - 101.7x \left(\frac{a}{w} \right)^{7/2} + 638.9x \left(\frac{a}{w} \right)^{9/2} \right]
\]

bağıntısı ile hesaplanır. Burada,

\[
P = \text{Yük}
\]

\[
B = \text{Numune kalınlığı}
\]

\[
W = \text{Numunenin derinliği veya genişliği}
\]

\[
a = \text{Çentik derinliği}
\]

\[
L = \text{Açıklığı göstermektedir.}
\]

\[\text{Şekil 3.2. Standart Mod I Eğilme Numunesi}\]
Şekil 3.3. Standart Mod Kompakt Çekme Numunesi

Mod II Deney Geometrisi

(a) Kesme Kuvveti Diyagramı

(b) Eğilme Momenti Diyagramı

Şekil 3.4. Önerilen Mod II Deney Numunesi
Şekil 3.4’de verilen bu deney geometrisi K₅-Kᵦ kompozit mod çatlaklarının gevreklik kırılmasını araştırmak için Gao tarafından geliştirilen deney geometrisinin bir değişimidir.

Bazant Z. P. Vd (1985), betonun ve harç kirişlerinin kesme kırılmasını bulmak için gösterilen geometriyi kullanmışlardır. Onların kullandığı numunelerin uzunluk/derinlik oranı 8/3 olan sabit değişmeyen kirişlerdir. Çentikler numunenin alt ve üst kenarlarına kirişin 1/6 derinliğine uzanan 2.5mm’lik bir kalınmaktadır.

Bütün deney numunelerinde cam lifi kullanılmışlardır. Hasır halindeki cam lifler parçalara ayrılarak metre kareye 560 gr düşecek şekilde kullanılmıştır. Hasır halindeki bu cam lifler değişik ebatlarda ki kalıplara uyacak şekilde kesilmiş ve 0, 1, 2, 4 ve 6 tabaka olacak şekilde hazırlanmıştır. Bu tabakalar ağırlık olarak yaklaşık % 0, 2, 4, 8 ve %12 oranında cam lifi içermektedir.

Bütün numuneler PTFE ile kaplanmış düzgün ahşap kalıplara dökülmüşdür. Eğilme numuneleri 200x50 mm ebatlarında ve 12 mm kalınlığındadır. Liflerin çimento şerbeti ile iyi bir şekilde sarılması için, su/çimento oranı 0.60 olan karışım kullanılmıştır. Başlangıçta her kalıbın içerisine çimento şerbeti dökülmüşdür. Daha sonra doğranmış cam lifler bu kalıbin içine atılmış ve bir silindir vasıtasıyla çimento şerbeti ile birlikte karştırılmıştır. Sonra biraz daha fazla çimento şerbeti ilave edilmiş ve arkasından doğranmış cam liflerden bir tabaka daha serilerek çimento şerbeti ile karştırılmıştır. Bu işleme gerekli olan tabakaya ulaşınca kadar aynı şekilde devam edilmiştir.
Daha sonra kalbin üst seviyesine kadar çimento şerbeti doldurulmuştur. Liflerin ünlü form olarak dağıtılmamasına dikkat edilmesi rağmen, kırılmış numunelerde bu dağılımlarda bazı değişmeler görülmüştür. Numuneler 24 saat kalplerin içerisinde tutulduktan sonra kalplar sökülerek 28 gün 20°C sıcaklıklı su içerisinde küre tabi tutulmuştur. Çentikler yaklaşık olarak 21 gün sonra açılmıştır. Çentik derinliklerinin değişimi her üç numune için araştırılmış fakat sonuçlar her iki Mod I deney numuneleri için çentik derinlik oranından bağımsız olduğu için çentik derinliği değişiminin etkisi rapor edilmemiştir. Çentik derinliğinin arttırılması ile Mod II sonuçlarında çok küçük değişiklikler gözlenmiştir. Ancak, bu muhtemelen çentiğin en alt kısmının etrafındaki bütün kompozit hareketlerin gelişmesi yetersiz olan daha küçük çentik derinliklerinden kaynaklanmaktadır.

Tüm deneyler deplasman kontrol edilebilen deney makinası kullanılarak yapılmıştır. Deneyler normal oda sıcaklığında 20°C'de %70 nem oranında yapılmıştır. Deney makinasının tablası üç deney numunesi için de 0.5 mm/dakika'da tatbik edilmiştir. Yük-deplasman eğrleri otomatik olarak çizdirilmiş ve Şekil 3.1'de gösterilmiştir.

Eğilme ve kompakt çekme numuneleri için kırılma sertliği sonuçları yukarıda verilen iki formül kullanılarak bulunmuştur. Kayma gerilmesi (τ) ise aşağıdaki bağıntidan hesaplanmıştır.

\[
\tau = \frac{L_1}{L_1 + 2d} \times \frac{P}{B(W - 2a)}
\]

τ = Kayma Gerilmesi
L₁ = Numunenin Uzunluğu
P = Max Çatlama Yükü
B = Numune Kalınlığı
W = Numunenin Derinliği
a = Çentik Derinliği
Mod I ve Mod II yükleme şartları altındaki çatlama sonrası performansı Şekil 3.5’de gösterilen topluk indeksi kullanılarak değerlendirilmiştir.

Topluk indeksi Şekil 3.5.a’daki durumda yük-deplasman grafiğindeki toplam taralı alanın, aynı grafikte ilk çatlamının meydana geldiği noktaya kadar olan ve dört katı alınan alana oranlanması ile bulunmuştur.

Topluk indeksinin tamın Şekil 3.5.b’de yük-deplasman grafiğindeki B alanının ilk çatlağın oluştuğu noktayı altında kalan A alanının 3 katına bölünmesiyle yüzde olarak ifade edilmiştir. Her iki tanımında topluk indeksi için alt ve üst sınır değerleri ve aynı zamanda elasto plastik çözümü için (0.75 veya 0.67) verilen bir değer olarak belirtilmiştir (Rilem, 1978).

Topluk indeksi sonuçların aralığı ikinci tanım durumunda daha büyütür. Bu topluk ölçeginin alt sınırında ikinci tanımı daha faydali yapar (düşük modülü liflerde). Ancak ikinci tanımın bir dez avantajı birinci tanımında elde edilen sonuçlarla karşılaştırıldığı zaman değişim katsayısının değeri daha fazladır.

Şekil 3.5. Topluk İndeksinin İki Tanımı
Ayrıca bu çalışmamın ana amacı topluk indeksenin artışının değerlendirilmesi olduğu için takviye edilmemiş malzemeler için temel bir değer (topluk indeksi 0.25 olarak verilmiştir) gerektirir. Bundan dolayı Şekil 3.5.a'da gösterilen topluk göstergesinin ilk tanımı bütün çalışma boyunca kullanılmıştır. Bu tanım Johnston tarafından önerilen temel birim tanımı ile benzerdir.

Eğilme numunelerinden elde edilen kırılma mukavemeti sonuçları Tablo 3.1'de verilmiştir. Bu sonuçlar temel mühendisliğin eğilme teorisi kullanılarak elde edilmiş ve lif muhtevasının artımdan dolayı mukavemetin arttığı açıktı görülmektedir. Buna karşılık gelen kırılma topluluğu ve topluk indeksi sonuçları Tablo 3.2'de verilmiştir.

Lif muhtevasının artması ile çatlak yayılmasının direncinin artırdığı kırılma topluluğunun artını göstermesine rağmen, bu aynı sonuç topluk göstergesi sonuçlarına uygulanamaz. Bu sonuçlar lif takviyeli kompozitler için hem kırılma topluluğunu hem de topluk indeksi sonuçlarını gösterir. Yalnızca bir katman cam lif (ağırlık bakımdan %2) 0.85'lik topluk indeksini elde etmek için yeterlidir. Yani (Yukanda iyi bir elasto plastik davranış elde etmek için) ek cam lif katmanlarının eklenmesinin sürekli yararları kırılma topluluğu sonuçlarında görülmemiştir ve bu sonuçlar lif muhtevasının artması ile uniform olarak artmıştır. Bu çalışmada lif oranının artım topluk indeksenin artışını göstermemiştir.

Tablo 3.1. Eğilme Numunelerinin Kırılma Mukavemeti Sonuçları

<table>
<thead>
<tr>
<th>Cam Lif Katmanlarının Sayısı</th>
<th>Çatlama Mukavemeti Gerilme N/mm² V(%)</th>
<th>Artış Katsayısı</th>
<th>Maksimum Mukavemet Gerilme N/mm² V(%)</th>
<th>Artış Katsayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.16 (12.6%)</td>
<td>1.0</td>
<td>3.16 (12.6%)</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>7.17 (31.0%)</td>
<td>2.27</td>
<td>10.29 (16.4%)</td>
<td>3.26</td>
</tr>
<tr>
<td>2</td>
<td>13.46 (22.4%)</td>
<td>4.26</td>
<td>17.43 (16.5%)</td>
<td>5.52</td>
</tr>
<tr>
<td>4</td>
<td>22.05 (22.5%)</td>
<td>6.98</td>
<td>25.87 (23.9%)</td>
<td>8.19</td>
</tr>
<tr>
<td>6</td>
<td>27.09 (30.0%)</td>
<td>8.57</td>
<td>40.11 (25.9%)</td>
<td>12.9</td>
</tr>
</tbody>
</table>
Tablo 3.2. Eğilme Numunelerinden Elde Edilen Kırlma Tokluğu ve Tokluk İndeksi Sonuçları

<table>
<thead>
<tr>
<th>Cam Lif Katmanlarının Sayısı</th>
<th>Kırlma Toklukları</th>
<th>Tokluk İndeksi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{le} (MN/m²) V(%)</td>
<td>Artış Katsayısı</td>
</tr>
<tr>
<td>0</td>
<td>11.17 (7.0 %)</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>23.26 (33.8 %)</td>
<td>2.08</td>
</tr>
<tr>
<td>2</td>
<td>41.59 (27.5 %)</td>
<td>3.72</td>
</tr>
<tr>
<td>4</td>
<td>60.28 (27.6 %)</td>
<td>5.40</td>
</tr>
<tr>
<td>6</td>
<td>79.49 (23.2 %)</td>
<td>7.11</td>
</tr>
</tbody>
</table>

Kompakt çekme numuneleri için kırlma mukavemeti ve kırlma parametreleri sonuçları sırasıyla Tablo 3.3 ve Tablo 3.4'de verilmiştir. Tablo 3.3 ve Tablo 3.4'de verilen deney sonuçları Tablo 3.1 ve Tablo 3.2'de verilen sonuçlarla tüm özellikleri ile benzerdir.

Tablo 3.3. Kompakt Çekme Numunelerinden Elde Edilen Kırlma Mukavemeti Sonuçları

<table>
<thead>
<tr>
<th>Cam Lif Katmanlarının Sayısı</th>
<th>Çatlama Mukavemeti</th>
<th>Maksimum Mukavemet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gerilme N/mm² V(%)</td>
<td>Artış Katsayısı</td>
</tr>
<tr>
<td>0</td>
<td>1.65 (23.5 %)</td>
<td>1.65 (23.5 %)</td>
</tr>
<tr>
<td>1</td>
<td>3.55 (22.5 %)</td>
<td>4.72 (11.8 %)</td>
</tr>
<tr>
<td>2</td>
<td>6.18 (22.0 %)</td>
<td>9.92 (13.2 %)</td>
</tr>
<tr>
<td>4</td>
<td>10.17 (23.3 %)</td>
<td>14.35 (26.0 %)</td>
</tr>
<tr>
<td>6</td>
<td>10.95 (7.0 %)</td>
<td>22.24 (4.8 %)</td>
</tr>
</tbody>
</table>
Tablo 3.4. Kompakt Çekme Numunelerinden Elde Edilen Kırılma Tokluğu ve Tokluk İndeksi Sonuçları

<table>
<thead>
<tr>
<th>Cam Lif Katmanlarının Sayısı</th>
<th>Kırmızı Toklukları</th>
<th>Tokluk İndeksi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{1e} (MN/m²) V(%)</td>
<td>Artık Katsayısı</td>
</tr>
<tr>
<td>0</td>
<td>7.41 (9.0 %)</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>19.22 (21.5 %)</td>
<td>2.59</td>
</tr>
<tr>
<td>2</td>
<td>33.37 (18.6 %)</td>
<td>4.50</td>
</tr>
<tr>
<td>4</td>
<td>54.51 (17.6 %)</td>
<td>7.35</td>
</tr>
<tr>
<td>6</td>
<td>66.61 (22.8 %)</td>
<td>8.98</td>
</tr>
</tbody>
</table>

Kısımlar olarak artış değerleri (yani verilen lif muhtevası için elde edilen sonuçların buna karşılık gelen lifsiz sonuçlara oranı) çok yakın bir uyum göstermiştir. Değişim katsayısının en büyük değerleri çatlama mukavemeti ve kırılma tokluguayun belirlenmesi ile elde edilmiştir. Bu ilk çatlama noktasının tam yerinin belirlenmesindeki zorluktan dolayıdır. Değişim katsayısı daha hassas bulunabileceğinden dolayı maksimum mukavemet için değişim katsayısı çatlama mukavemeti için elde edilenden daha küçüktür. En küçük değerli sonuçlar genellikle %10'undan altında olan tokluk indeksi için elde edilmiştir.

Çatlama mukavemeti, maksimum mukavemet ve kırılma toklugu için verilen artış değerleri o kadar geçektir ki onlar lif takviyeli kompozitler için kırılma sonuçları oranının lifsiz numuneler için elde edilen sonuçlara bölünmesi ile bulunur.

Tokluk indeksi sonuçları durumunda 0.25 sunu değeri sıfır kalınlığı yanıstmaktadır. En üst ölçekte olan 1 en uygun tokluku yanıstmaktadır. Bundan dolayı tokluk indeksinin mümkün olabilen maksimum artış 4'tür. Bu sınırlamaya rağmen tokluk indeksi çatlama sonrası için en yararlı ölçümüdür. Yalnızca bir katman cam lif (ağırlık bakımından %2) yaklaşık olarak 3.5’lik bir faktör ile toklugu artışını için yeterlidir.
Çatlama ve maksimum kesme mukavemeti sonuçları Tablo 3.5’de verilmiştir. Lif muhtevası %8’e kadar arttıktığı zaman (4 katman) sonuçlar kesme mukavemetinin arttığını gösterir.

Kesme mukavemeti lif muhtevasının artırmı ile küçük bir azalmış gösterir. Çatlama kesme mukavemeti üzerine maksimum kesme mukavemetindeki artış çalışılan lif muhtevası aralıkları için benzerdir. Tablo 3.1 ve Tablo 3.3’deki sonuçlar ile Tablo 3.5’de buna karşılık gelen sonuçlar karşılaştırıldığında, kesme mukavemetinin düşük lif oranları için (bir veya iki katman) daha hızlı arttığını görülmiştir. Eğilme ve çekmedeki artış kesmede elde edilenden daha büyük olduğu yalnızca yüksek lif oranları icindir. Bu muhtemelen kesmede lifli kompozitlerin etkisinin azalmaya yöndiği bağlayıcıların dökümantasyon problemlerinden dolayıdır.

Kesme için toplu indeksi sonuçları Tablo 3.6’da verilmiştir. Bir katman cam lif 0.76’lık bir topluk indeksini vermesi için yeterlidir. Bu durum yaklaşık olarak elasto-plastik davranışa karşı gelir. Tokluk indeksi sonuçları dört katman için maksimum değer olan 0.85’e kadar marjinal olarak artar ve daha sonra altı katman cam lif için 0.81’e düşer. Mod I ve Mod II’deki topluk indeksi sonuçları ağırlık bakımından %2’lik bir lif muhtevasi için her iki Mod durumunda da yaklaşık elasto-plastik davranışa benzer özellikler gösterir ve lif muhtevasi arttığı zaman yalnızca marjinal olarak artar.

Tablo 3.5. Mod II Deney Numunelerinden Elde Edilen Kesme Mukavemeti Sonuçları

<table>
<thead>
<tr>
<th>Cam Lif</th>
<th>Çatlama Mukavemeti</th>
<th>Maksimum Mukavemet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katmanlarının Sayısı</td>
<td>Gerilme N/mm² V(%)</td>
<td>Artış Katsayısı</td>
</tr>
<tr>
<td>0</td>
<td>2.67 (15.2 %)</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>6.92 (25.1 %)</td>
<td>2.59</td>
</tr>
<tr>
<td>2</td>
<td>11.98 (20.6 %)</td>
<td>4.49</td>
</tr>
<tr>
<td>4</td>
<td>13.10 (20.8 %)</td>
<td>4.90</td>
</tr>
<tr>
<td>6</td>
<td>11.81 (20.8 %)</td>
<td>4.42</td>
</tr>
</tbody>
</table>
Kesmedeki topluk indeksi Mod I yüklemesi için buna karşılık gelen topluk indeksinden sürekli daha azdır. Cam lifli kompozitler için (GRC) bu sonuçlar çeliğ ve propilen lifler için elde edilen sonuçlara benzerdir.

Tablo 3.6 Mod I sonuçlarına göre Mod II topluk indeksinin belirlenmesinde elde edilen daha yüksek değişim katsayısını gösterir.

İki adet Mod I kırılma deney numuneleri ve bir adet Mod II kesme numunesi cam lifli kompozit malzemelerinin kırılma karakteristiklerini belirlemek için kullanılmıştır. Mod II deney numuneleri deney malzemeleri için geliştirilen standart kırılma deney numuneleri esas alınarak hazırlanmıştır.

Tablo 3.6. ModII Deney Numunelerinden Elde Edilen Tokluk İndeksi Sonuçları

<table>
<thead>
<tr>
<th>Cam Lif Katmanlarının Sayısı</th>
<th>Tokluk İndeksi</th>
<th>Ortalama T.L. (T.1)</th>
<th>V (%)</th>
<th>Artış Katsayısı</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.25</td>
<td>-</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.76</td>
<td>15.8</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.80</td>
<td>13.4</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.85</td>
<td>7.3</td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.81</td>
<td>8.5</td>
<td>3.23</td>
<td></td>
</tr>
</tbody>
</table>
Kesme geometrisi metallerde karışik mod çatıkları çalışan Gao tarafından geliştirilen deney numunesinin bir geliştirilmiş şeklidir. Çatlama mukavemeti, kırılma toklugu ve kırılma indeksi sonuçları ağırlık bakımından %2'den %12'ye kadar değişen cam lif muhteşam kompozit malzemeler için verilmiştir. İlk çatlağa karşı direnç ya K_{1C} (Mod I deneyi) veya kesme mukavemeti (Mod II deneyi) vasıtasıyla ölçülmuştur ve çatlama sonrası performansı topluk indeksi ile ölçülmuştur. Ana sonuçlardan birisi cam lifli kompozit malzemelerinin kırılma karakteristiklerini belirlemek için iki kırılma parametresi birlikte kullanılarak değerlendirilmiştir.

Lif muhtevasının arttırması Mod I deneyinde kırılma tokluğunu artırır. Ancak Mod II yükleme durumunda çatlamaya karşı direnç yalnızca %0-8 lif oranlarında artmıştır. Daha yüksek lif oranları cam lifli kompozitlerin kesme performansını arttırmamaktadır. Şekil 3.6'da lif oranının artması ile elde edilen artış eğrileri görülmektedir. Benzer tokluk indeksi sonuçları çalışılan lif oranları aralıkları için Mod I ve Mod II deneylerinden elde edilmiştir. Mod II tokluk indeksi sonuçları buna karşılık gelen Mod I sonuçlarından küçük olması rağmen aradaki fark çok küçüktür.

Şekil 3.6. Lif Oranının Artması İle Elde Edilen Artım Eğrileri (Barr, 1982)
Bu çalışmada kullanılan Mod II deney numune geometrisi çok geniş diğer malzemelerin deneyleri için kullanılabilen kompakt kesme deney numunesi için bir modeldir. Bu deney geometrisi için daha fazla çalışma gereklidir. Cam lifli kompozit malzemeler ve diğer lif katkılı kompozitler üzerindeki gelecekteki çalışmalar onların kesme performansını üzerine yoğunlaştırılmıştır.

Cam lif ve çimento bağlayıcılarındaki ara kesitte matrikslerin yoğunlaşması, cam lifli beton kompozitlerde (GFRC) kırılabilirliğe yol açmaktadır. Liflerin arasındaki boşluklarda hidrasyon ürünlerinin formasyonu kadar, ara kesitten yaklaşık olarak 70-100 mili mikron olan bölgelerde meydana gelen katlamış olayı cam lifli beton kompozitlerde malzemedeki tokluğu azaldığını göstermektedir.

M. Kawamura ve S. Igarashi yaptıkları bir çalışmada şu sonuçları bulmuşlardır.

1. Cam lifli kompozit malzemelerinin üretimi esnasında liflerin gevşemesi ve iyi yerleşmesi kompozitlerin kırılabilirliğini artırır.

2. 5°C'de iyileştirilen yeni cam liflerle desteklenen cam lifli kompozit kireçli harçının eğilme mukavemeti 180 güne kadar önemli bir oranda artmaktadır.

3. Cam lifli kompozit kireçli harçlardaki dayanım 38°C sıcaklıkta ve ilk 60 gün esnasında hızlıca düşmektedir.

4. Cam lifli çimento bağlayıcılarının ara kesit bölgeleri ile cam lifsiz çimento bağlayıcılarının ara kesit bölgeleri karıştırıldığı zaman bunların mikro sertliklerinde değişik özellikler gözenmektedir.

5. Ara kesit bölgelerinde 70-100 mili mikron arasında meydana gelen bu yüksek değerler, belir bir bölgede fazlaca meydana gelen Ca(OH)₂ miktarından kaynaklanmaktadır.
6. Cam lifli beton kompozitlerinin kırlanlığında, cam liflerden dolayı meydana gelen eğilme gerilimlerinin etkisini önemli olmadığı görülmüştür.

Ohama Y. Vd (1985), karbon lif ve silis dumanı ile takviye edilmiş cimentoğün özellikleri konusunda yaptıkları araştırmada W/C oranını 0.30’da tutmuşlardır. Bunun yanında Silis dumanı/Cimento oranı da 0.40’da tutup %1, 3 ve %5 lif katarak çekme gerilmesinde %270, eğilme mukavemetinde %340’lara varan bir mukavemet artış gözlemişlerdir.

Linton J. R. Vd (1991), karbon lifle takviye edilmiş cimento ve harç konulu araştırmada, %1.65, 2 ve %3 lif içeriğine karşılık, W/C oranını 0.37, 0.37 ve 0.21’de tutup, eğilme mukavemetinde %165, 165 ve %90 bir artma sağlamıştır.

Park S. B. Vd (1991), karbon lifle takviye edilmiş cimento bileşiklerinin imalatı konulu araştırmada %1, 2 ve %3 lif içeriğine karşılık W/C oranını 0.30’da tutup, çekme mukavemeti değerinde %120, 170 ve %200’lik bir artış gözlemiştir.

Banthia N. Vd (1991), mikro takviye konulu araştırmada %1, 3 ve %5 lif içeriğine karşılık W/C oranını, 0.30’da tutup eğilme mukavemeti değerinde, %250, 360 ve %375’lik bir artış gözlemiştir.

Ali M. A. Vd (1972), karbon lifle takviye edilmiş cimento konulu araştırmada, %3 ve %3.7 lif içeriğine karşılık W/C oranını 0.30’da tutup çekme mukavemetinde, %70 ve %500’lük bir artış gözlemiştir.
4. ARAŞTIRMADA KULLANILAN MALZEMELEER

4.1. Malzeme

4.1.1. Cam elyafi

Cam lifli bu kompozitlerin, parça bütünlüğü, hafiflik, yüksek mekanik mukavemet, darbe dayanımı ve uzun kullanım ömrü gibi özellikleri, çok geniş kullanım alanlarında avantaj sağlamaktadır. Çok fazla bilinmemekte birlikte, cam elyafi elastik bir malzemedir. Yani, yüksek altını düzgün olarak kopma noktasına kadar uzayan cam elyafi, çekme yükünün kalkmasının sonucunda herhangi bir akma özelliği göstermeden tekrar başlangıç boyutuna döner.

Diğer metallerde ve organik liflerde bulunmamayan bu elastik özellik ve yüksek mukavemet özellikleri, cam elyafına büyük miktarı enerjiyi, kayıpsız olarak depolama ve bırakma imkanı sağlamaktadır. Bu özellikle birlikte dinamik yorulma dayanımı, aşınmaya karşı korunması şartı ile otomobil, kamyon amortisör yarları ve mobilya yarları gibi ürünlerin cam elyafi takviyeli plastik malzemeden yapılabilmesini sağlamaktadır.

Cam elyafi takviyeli plastiklerde mukavemeti etkileyen bir diğer etmen, cam elyafi takviyesinin yönüdür ve yönlenme, cam elyafının reçine ile kaplanabilirliğini de etkiler. Dolayısı ile, cam elyafi takviye miktarının artışı ile birlikte mukavemeti de yükseltir. Değişik sanayi dallarında kullanılan bu yapı malzemesinin, inşaat sanayinde de kullanılabilirliği araştırılmıştır. Buna en büyük etken de betonun iyi olmayan bazı özelliklerinin iyileştirilmesidir.
Örnek olarak, belli bir hacimde tek yönlü takviye ile % 80-85 cam elyafi kaplanabilirken, tesadüfi yönlenmiş takviye kullanıldığında, aynı hacimde en çok % 65 oranında takviye sağlanabilmektedir.

Bu üstün özelliklerine rağmen, kompozitlerin yük taşıma kabiliyetinde zamanla azalma görülmektedir. Bu nedenle, tasarım yapılırken uygun bir emniyet faktörü öngörülecek, ani kırılmaların önüne geçilmesi gerekliktir.

Zamana bağlı olarak mukavemetin azalması, çekme dayanımının başlangıç değerinin 2/3'üne çok kısa sürede düşmesi ve 1/2'sine 50 yıl gibi bir sürede düşmesi şeklinde görülmektedir. Cam life ait bazı tipik özellikler Tablo 4.1'de verilmektedir. Kısaca cam liflerinin kullanıldığı yerleri aşağıdaki sekilde sıralayabiliriz.

- Büyük ağırlık ve kum kullanılan fabrika lösemelerinde,
- Yeni veya eski beton lösemi imalatında,
- Deniz, su ve nehir kenarlarına kullanılan betonlardaki,
- Oto-yol kenarlarındaki su kanalı ve borularda,
- Elastikleştirme yaptığı betona her şekli verebilmekte,
- Su geçirgenliği az olduğu ev kilerlerinde ve rutubetti yerlerde,
- İnşaat lösemelerinde ve benzeri bitümmü işlerde cam elyafi kullanılabilir.

Tablo 4.1. Cam Liflerine Ait Bazı Tipik Değerler

<table>
<thead>
<tr>
<th>Lif Çeşidi</th>
<th>Boyutu (µm)</th>
<th>Özgül Ağırlık kN/m²</th>
<th>Young Modülü kN/mm²</th>
<th>Çekme Mukavemeti kN/mm²</th>
<th>Kırılmada Uzama (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cam</td>
<td>9-15</td>
<td>26.0</td>
<td>70-80</td>
<td>2.4</td>
<td>2-3.5</td>
</tr>
</tbody>
</table>
4.1.2. Portland çimentoosu

Araştırmada, Elazığ Altnova Çimento Fabrikası A.Ş.’nin üretmiş olduğu portland çimentoosu (PC 325) kullanılmıştır. Çimentoların fiziksel ve kimyasal analiz sonuçları Tablo 4.2'de verilmiştir. Bütün deneylerde aynı çimento kullanılmıştır.

Tablo 4.2. Portland Çimentosunun Analiz Sonuçları

<table>
<thead>
<tr>
<th>KİMYASAL ANALİZLER (%)</th>
<th>Elazığ Çimento PC 325</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>65.87</td>
</tr>
<tr>
<td>SiO₂</td>
<td>20.42</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.92</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2.81</td>
</tr>
<tr>
<td>MgO</td>
<td>3.23</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.97</td>
</tr>
<tr>
<td>Çözünmeyen Kalıntı</td>
<td>0.18</td>
</tr>
<tr>
<td>Tayin Edilemeyen</td>
<td>1.10</td>
</tr>
<tr>
<td>(Na₂O+K₂O) Alkaliler</td>
<td>0.15</td>
</tr>
<tr>
<td>Klorür CI</td>
<td>≤ 0.1</td>
</tr>
<tr>
<td>Kızdırma Kaybı</td>
<td>2.16</td>
</tr>
<tr>
<td>C₃S</td>
<td>60.06</td>
</tr>
<tr>
<td>C₃S</td>
<td>13.31</td>
</tr>
<tr>
<td>C₃A</td>
<td>10.94</td>
</tr>
<tr>
<td>C₄AF</td>
<td>8.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FİZİKSEL ANALİZLER</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Özgürl Ağırlık (g/cm³)</td>
<td>3.00</td>
</tr>
<tr>
<td>Özgürl Yüzey (cm²/g)</td>
<td>3927</td>
</tr>
<tr>
<td>Elektre Kalan (%)</td>
<td></td>
</tr>
<tr>
<td>200 mik</td>
<td>1.1</td>
</tr>
<tr>
<td>90 mik</td>
<td>7.6</td>
</tr>
<tr>
<td>Normal Kivam Su (%)</td>
<td></td>
</tr>
<tr>
<td>Priz Başlama</td>
<td>2.25</td>
</tr>
<tr>
<td>(s/dk)</td>
<td>3.55</td>
</tr>
<tr>
<td>Le Chatelier (mm)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAYANIMLAR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Basınç</td>
<td></td>
</tr>
<tr>
<td>7 gün</td>
<td>27.5</td>
</tr>
<tr>
<td>28 gün</td>
<td>38.5</td>
</tr>
<tr>
<td>Eğilmede Çekme</td>
<td></td>
</tr>
<tr>
<td>7 gün</td>
<td>5.7</td>
</tr>
<tr>
<td>28 gün</td>
<td>6.8</td>
</tr>
</tbody>
</table>
4.1.3. Karma suyu

İçilebilir nitelikte olan ve TS 500’de beton yapımında kullanımla izin verilen sular, beton boruların yapımında karışım suyu olarak kullanılabilir. Kullanılan suyun sulfat içeriği %1'den, klorür içeriği de %2'den fazla olmamalıdır. Laboratuarda yapılan deneylerde karma suyu olarak PH’ı 7.05 olan üniversitein şebekesi suyu kullanılmıştır. Karma suyu olarak kullanmadan önce suyun dinlenmesi ve 21±2°C’de olabilmesi için, tam bir gün laboratuar ortamında bekletildikten sonra kullanılmıştır. Beton borularında kullanlan karma suyu ise Sivrice düz fabrikasında içme suyu olarak kullanılan sudan alınmıştır.

4.1.4. Agrega

Beton deneylerinde Elazığ-Çemişgezek kumu kullanılmıştır. Mevcut yıkmama eleme tesisinde hazırlanmaya olan üç değişik agrega malzemesi mevcuttur. Bu agregalara ait granülometrik bileşimler, kil oranları, aşınma miktarları ve don kaynakları ayrı ayrı hesaplanarak tablolarında granülometrik bileşimleri verilmiştir. 1 Nolu (İnce) agrega numunesi üzerinde yapılan deneylerin sonuçları Tablo 4.3’de verilmiştir (TS 706).

Kil (%)’si Miktari:

\[W_1 = 1218 \text{ gr. (İlk kuru ağırlık)} \]

\[W_2 = 1205 \text{ gr. (Son kuru ağırlık)} \]

\[\text{Kil (\%)} = \frac{1218-1205}{1218} \times 100 = \%1.1 \]

Tablo 4.3. 1 Nolu Malzemeye Ait Granülometrik Bileşim

<table>
<thead>
<tr>
<th>Elek Göz Açıklığı (mm)</th>
<th>Kümulatif Geçen Geçen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>65</td>
</tr>
<tr>
<td>0.50</td>
<td>23</td>
</tr>
<tr>
<td>0.25</td>
<td>9</td>
</tr>
<tr>
<td>Kap</td>
<td>0</td>
</tr>
</tbody>
</table>
2 Nolu (Orta) agrega numunesi üzerinde yapılan deneylerin sonuçları Tablo 4.4'de verilmiştir.

Kıl (%)’si miktarı:
Bu agrega numunesinde kil tespit edilmemiştir.

3 Nolu (Orta) agrega numunesi üzerinde yapılan deneylerin sonuçları Tablo 4.5'de verilmiştir.

Aşınma Kaybı (Los Angeles'e göre) (%)’si:

\[W_1 = 5000 \text{ gr. (ilk kuru ağırlık)} \]
\[W_2 = 4620 \text{ gr. (100 devir sonraki kuru ağırlık)} \]
\[W_3 = 4030 \text{ gr. (500 devir sonraki kuru ağırlık)} \]

\[\text{Aşınma Kaybı (100 devir)} = \frac{5000 - 4620}{5000} \times 100 = \% 7.6 \]
\[\text{Aşınma Kaybı (500 devir)} = \frac{5000 - 4030}{5000} \times 100 = \% 19.4 \]

Tablo 4.4. 2 Nolu Malzemeye Ait Granülometrik Bileşim

<table>
<thead>
<tr>
<th>Elek Göz Açıklığı (mm)</th>
<th>Kümülatif Geçen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0</td>
<td>100</td>
</tr>
<tr>
<td>4.0</td>
<td>46</td>
</tr>
<tr>
<td>2.0</td>
<td>6</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Tablo 4.5. 3 Nolu Malzemeye Ait Granülometrik Bileşim

<table>
<thead>
<tr>
<th>Elek Göz Açıklığı (mm)</th>
<th>Kümülatif Geçen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0</td>
<td>100</td>
</tr>
<tr>
<td>8.0</td>
<td>23</td>
</tr>
<tr>
<td>4.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Kıl (%)’si miktarı: Bu agrega numunesinde kil tespit edilmemiştir.
Don Kaybı (%)'si:

\[W_1 = 978 \text{ gr. (İlk kuru ağırlık)} \]
\[W_2 = 970 \text{ gr. (Son kuru ağırlık)} \]
\[\text{Don Kaybı (%)} = \frac{978 - 970}{978} \times 100 = 0.8\% \]

Mevcut agrega numunelerinde yoğunluk \(\gamma = 2.70 \text{ kg/dm}^3 \)

Elazığ-Çemişgezek kum ocağına ait agreganın elek analiz sonuçları Tablo 4.6'de verilmiştir.

Tablo 4.6. Elazığ-Çemişgezek Agregası Elek Analizi Sonuçları

<table>
<thead>
<tr>
<th>Elek Göz Açıklığı (mm)</th>
<th>Kalan (gr)</th>
<th>Kumlułatif Ağırlık (gr)</th>
<th>% Kalan</th>
<th>% Geçen</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100.00</td>
</tr>
<tr>
<td>16.0</td>
<td>210.75</td>
<td>210.75</td>
<td>21.07</td>
<td>78.93</td>
</tr>
<tr>
<td>8.0</td>
<td>40.00</td>
<td>250.75</td>
<td>25.07</td>
<td>74.93</td>
</tr>
<tr>
<td>4.0</td>
<td>193.30</td>
<td>444.05</td>
<td>44.41</td>
<td>55.59</td>
</tr>
<tr>
<td>2.0</td>
<td>181.40</td>
<td>625.45</td>
<td>62.55</td>
<td>37.45</td>
</tr>
<tr>
<td>1.0</td>
<td>145.00</td>
<td>770.45</td>
<td>77.05</td>
<td>22.95</td>
</tr>
<tr>
<td>0.5</td>
<td>117.00</td>
<td>887.45</td>
<td>88.75</td>
<td>11.25</td>
</tr>
<tr>
<td>0.25</td>
<td>77.55</td>
<td>965.00</td>
<td>96.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Toplama Kabı</td>
<td>35.00</td>
<td>1000.00</td>
<td>100.00</td>
<td>-</td>
</tr>
</tbody>
</table>

Deneylerde kullanılan üç agreganın granülometri eğrisi şekil 4.1’de verilmiştir.

Şekil 4.1. Elazığ-Çemişgezek Agregası Granülometri Eğrisi
4.1.5. Su/Cimento oranı

Bütün karışımlarda kullanılan su/cimento oranı W/C olarak ifade edilmiştir. W/C oranı, en elverişli durumda karışım ve karıştırıcıyı çalıştırmak için 0.39 olarak alınmıştır. Fakat beton borularda lif oranı arttıkça su emme miktarı artışından bu artış oranında su miktarı artırılmıştır. Bu oran 0.48’e kadar çıkarılmıştır.

4.1.6. Karışım oranı ve hesabı

Karışımlarda; Çimento, 1 nolu, 2 nolu ve 3 nolu agrega, cam lifi ve su kullanılmıştır. Bütün karışımlarda ağırlıkça %0, 0.2, 0.4 ve %0.6 oranında cam lifi kullanılmıştır. W/C oranı lif oranına bağlı olarak 0.39-0.48 arasında tutulmuştur. Deneylerde kullanılan malzeme oranları % olarak Tablo 4.7’de verilmiştir.

<table>
<thead>
<tr>
<th>Malzemeden Adı</th>
<th>Karışım Daki Miktarı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Nolu Agrega</td>
<td>24.1</td>
</tr>
<tr>
<td>2 Nolu Agrega</td>
<td>31.9</td>
</tr>
<tr>
<td>3 Nolu Agrega</td>
<td>16.3</td>
</tr>
<tr>
<td>Çimento</td>
<td>19.9</td>
</tr>
<tr>
<td>Su</td>
<td>7.8</td>
</tr>
<tr>
<td>Cam Lifi</td>
<td>0.2-0.4-0.6</td>
</tr>
</tbody>
</table>
5. CAM LİFLİ BETON NUMUNELERİ ÜZERİNDE YAPILAN DENEYLER ve SONUÇLARI

5.1. Basınç Dayanımı

5.1.1. Giriş

Betonların basınç mukavemetlerini tahmin etmek için kup veya silindir şeklindeki numuneler kullanılır. Genel olarak yapıda imal edilen her 50 m³ beton için en az üç deney numunesi hazırlanarak bunların 7 veya 28 günlük basınç mukavemetleri tahin edilir.

Bassinç kuvvetleri altında betonun davranışını açığa vuran bir karakteristik de gerilim-deformasyon diyagramıdır. Kısa süre yükleme sonunda elde edilen bu diyagram deney tekniği bakımından iki değişik tekniğe göre elde edilir. Metotlardan biri deneyin gerilmenin sabit bir hızla artırılarak yapılması, diğerinin ise deformasyon hızı sabit tutulmasını sağlayacak şekilde kuvvetin artırılarak deneyin yürütülmesidir. Sabit gerilme hızıyla yapılması halinde yani belirli bir sürede gerilmenin hep aynı miktarda artırılması
halinde kırılma durumuna yaklaştırıya boyluna ve enine deformasyon artış hızları artmaktadır. Başka bir deyişle bu yöntem ile yürütülün deneyde mukavemet değeri yaklaştırıya betonun iç yapısının değişme hızı büyümekte ve bunun sonunda da ani bir kırılma meydana gelmektedir. Deformasyon hızına sabit bir değer vererek yapılan deneylerde kırılmaya yakın durumlarda gerilmedeki artış azalmaacaktır olduğundan ani kırımlar önlenmekte ve böylelikle daha iyi sonuçlar elde edilmektedir (Postacıoğlu, 1987).

5.1.2. Deney yöntemi ve sonuçlar

Basıncı dayanım deneyi için hazırlanlan betonların karışım oranları TS 3114 esasına göre hazırlanmıştır. TS 3114 esasına göre hazırlanlan taze beton 10X10X10 cm’lik kup kalıplara dıştan vibrasyon uygulanarak ve sarma tablasına yerleştirilerek sıkıştırılmıştır. Laboratuarda hazırlanlan deney numuneleri, deney anna kadar yaklaşık 23\(^0\)C±2\(^0\)C sıcaklıkta ve doygun rutubette kır öadasına muhafaza edilmiştir. Burada bir tam gün bekletildiken sonra 23\(^0\)C±2\(^0\)C’de değişmez sıcaklıkta su tankına konulmuştur. Karışmalar 28 gün suda bekletildikten sonra çıkarılmış ve 2 gün oda şartlarında kurutulduktan sonra deneye tabi tutulmuştur.

TS 3114 esasına göre beton karışımlarına kuvvet uygulanması, numune basınç presi aletinin tablalar arasındaki yerleştirildikten ve tablaların, numunenin alt ve üst yüzüne iyi bir şekilde oturması sağlanmaktadır sonra başlanmıştır. Bu şartlar altında yürütülün deneyde, basınç presi makinası, beton numunesinin taşıvableceği maksimum kuvvete ulaştığı anda (P_{k}) yüklemeye otomatik olarak son vermiştir. Değişik lif oranlarında hazırlanmış kup numunelerinin kırılma yükleri ve bunlara bağlı olarak bulunan basınç dayanımları Tablo 5.1’de verilmişdir. Kırılma yüklerine göre basınç dayanımı değerleri (BD) aşağıdaki formülle hesaplanmıştır.

\[
BD = \frac{P_{k}}{A}
\]
Tablo 5.1. Cam Lifli Beton Numunelerinin Basınç Dayanımı
Deney Sonuçları

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Lif Oranı (%)</th>
<th>Kurılma Yükleri (28 Günlik) (N/mm²)</th>
<th>Basınç Dayanımı (N/mm²)</th>
<th>Kontrol (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-</td>
<td>41.2 42.5</td>
<td>41.57</td>
<td>100</td>
</tr>
<tr>
<td>L2</td>
<td>0.2</td>
<td>36 36 38.5</td>
<td>36.83</td>
<td>88.6</td>
</tr>
<tr>
<td>L4</td>
<td>0.4</td>
<td>37 35 35</td>
<td>35.67</td>
<td>85.8</td>
</tr>
<tr>
<td>L6</td>
<td>0.6</td>
<td>30 32 34</td>
<td>32.00</td>
<td>76.98</td>
</tr>
</tbody>
</table>

5.1.3. Tartışma

Cam lifli betonlar üzerinde yapılan basınç deneyinde Tablo 5.1’de de görüldüğü gibi lif oranı arttıkça basınç dayanımında azalma olmaktadır. Bunun sebebini ise şuana bağlamak mümkündür; cam lif katkı numunelerde boşluk oranının fazla olması ve karıştırma katılan liflerin, beton içerisinde daha fazla su emmesi ve daha az homojen olmasından kaynaklanmaktadır. Şekil 5.1’de lif oranlarına bağlı olarak basınç dayanımlarının değişimi görülmektedir.

Şekil 5.1. Lif Oranlarına Bağlı Olarak Basınç Dayanımlarının Değişimi
5.2. Cam Lif Katkıları Betonların Donma-Çözülme Tesirleri Altında Davranışı

5.2.1. Giriş

Araştırmannın amacı, içerisine belli oranlarda cam lifler katılmış betonların donma-çözülmeye karşı davranışını ortaya koymaktır. Bu düşünüceden harekete cam lifler
katılarak hazırlanmış 10cm'lik küp beton numunelerin TS 3449'a göre donma-çözülme zorlamaları altında davranışları incelenmiştir.

5.2.2. Deney yöntemi ve sonuçlar

Cam liflerin betonda kullanımı konusunda yapılan çalışmalar arasında, donma-çözülme dayanımına olan etkilerinin hiç araştırılmadığı görülmuştur. Bu nedenle bu tür liflerle üretilcek betonların, bu olaydan nasıl etkileneceğini görmek açısından bu çalışma araştırmacılarla bir fikir verecektir.

Beton karışım dizaynında su miktarları DYK agrega esas alınarak yapılmıştır. Deneyde beton karışımına %0, 0.2, 0.4 ve %0.6 oranlarında cam lifler katılarak numuneler hazırlanmıştır.

Hazırlanan numuneler 10 cm'lik küp numuneler halinde dökülmüştür. Bu numuneler su içinde (+22°C) sıcaklıkta 28 gün kür süresini doldurduktan sonra donma-çözülme deneyine tabi tutulmuştur.

Deneylerde numuneler önce değişmez ağrılığa gelinceye kadar etüve 110°C'de kurutulur. Etüvden çıkartılıp uygun bir desikatöre (kap) konularak oda sıcaklığına kadar soğutulduktan sonra 0.1 g hassasiyetle tartılarak (W0) bulunur. Bu şekilde kurutulmuş olan deney numuneleri normal atmosfer şartlarında suya doygun hale getirilir ve soğuk hava dolabına konulur.

Soğutma hızı yaklaşık 4 saat zarında -20°C'ye düşecek şekilde ayarlanır. Soğuk hava dolabi sıcaklığının -20°C'a düştüğü gözlemdikten sonra, yaklaşık 2 saat bu sıcaklıkta bekletilen deney numuneleri bu süre sonunda soğuk hava dolabından çıkarılırlar içerikte 20°C sıcaklıklıktaki su içine, tamamen su altında kalacak şekilde dalırlar ve en az 3 saat bekletilerek buzların tamamen erimesi sağlanır. Sonra tekrar soğuk hava dolabına konulur ve -20°C'a kadar soğutulur.
Bu şekilde donma-çözülme işlemi 25 kez tekrarlanan deney numuneleri sonunda 110°C sıcaklıklı etüvde değişmez ağırlığa gelinceye kadar kurutulup desikatörde soğutulduktan sonra 0.1 g duyarlıktı tartılır (W_a).

Deneyin birinci kısmında ağırlık kayına yönelik dayanıklılık faktörünün (AF_w) bulunmasına esas olan bir çalışma yapılmıştır. Yapılan deneyler sonucunda bulunan donma-çözülme sonuçları Tablo 5.2'de verilmiştir.

5.2.3. Tartışma

Lif katkılı numunelerde boşluk oluşması ve bu liflerin aderanlarının fazla iyi olmaması gibi nedenlerden dolayı numunelerin donma çözülme olayından etkilendiği, yüzeydeki çatıların fazla gelişikleri fakat numunelerde lif katkıından dolayı kopmaların olmadığı görülmüştür.

Ama %0.2 lif oranında az da olsa donma-çözülme miktarının azaldığı görülmektedir. Şekil 5.2’de lif oranlarına bağlı olarak donma-çözülme miktarlarının değişimi görülmektedir.

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Lif Oran (%)</th>
<th>Kuru Ağırlık (kg)</th>
<th>Son Ağırlık (kg)</th>
<th>Ağırlık Kayıpları (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>2440</td>
<td>2130</td>
<td>12.7</td>
</tr>
<tr>
<td>L2</td>
<td>0.2</td>
<td>2420</td>
<td>2113</td>
<td>12.68</td>
</tr>
<tr>
<td>L4</td>
<td>0.4</td>
<td>2410</td>
<td>2104</td>
<td>12.71</td>
</tr>
<tr>
<td>L6</td>
<td>0.6</td>
<td>2400</td>
<td>2094</td>
<td>12.76</td>
</tr>
</tbody>
</table>
Şekil 5.2. Lif Oranlarına Bağlı Olarak Donma-Çözülme Miktarlarının Değişimi

Bu sonuçlardan hareketle donma-çözülme olayının ön planda olduğu durumlarda % 0,2'den daha fazla lif kullanılmamasının uygun olacağı yapılan deneyler neticesinde belirlenmiştir.

Donma-çözülme deneyi 1 yıllık numuneler üzerinde de yapılmıştır. Toprak altında bırakan beton borulardan alınan parçalar ile açıkta bırakan borulardan alınan parçalar üzerinde donma-çözülme deneyleri yapılmış ve sonuçları karşılaştırılmıştır. Tablo 5.3'de verilen deney sonuçlarından da görüldüğü gibi her iki durumda da ağırlık kayıpları yönünden fazla bir fark yoktur. 28 günlük borularla karşılaştırıldığında; 1 yıllık boruların durabilitelerinde artış olduğu, Tablo 5.2 ve Tablo 5.3'de verilen deney sonuçlarından izlenebilir.
Tablo 5.3. 1 Yıllık Beton Parçalarının Donma-Çözülme Deney Sonuçları

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Lif Oranı (%)</th>
<th>Kuru Ağırlık (kg)</th>
<th>Son Ağırlık (kg)</th>
<th>Ağırlık Kayıpları (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toprak Alınırda</td>
<td>K</td>
<td>0</td>
<td>2460</td>
<td>2215</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>0.2</td>
<td>2455</td>
<td>2214</td>
</tr>
<tr>
<td>Bekletilmiş Numuneler</td>
<td>L4</td>
<td>0.4</td>
<td>2430</td>
<td>2190</td>
</tr>
<tr>
<td></td>
<td>L6</td>
<td>0.6</td>
<td>2440</td>
<td>2193</td>
</tr>
<tr>
<td>Açıkta</td>
<td>K</td>
<td>0</td>
<td>2440</td>
<td>2205</td>
</tr>
<tr>
<td>Bekletilmiş Numuneler</td>
<td>L2</td>
<td>0.2</td>
<td>2410</td>
<td>2182</td>
</tr>
<tr>
<td></td>
<td>L4</td>
<td>0.4</td>
<td>2415</td>
<td>2176</td>
</tr>
<tr>
<td></td>
<td>L6</td>
<td>0.6</td>
<td>2425</td>
<td>2183</td>
</tr>
</tbody>
</table>

5.3. Sürtünme Yolu İle Aşınma Kaybı

5.3.1. Giriş

Betonla aşınma dayanımıını artırmak için metal agregaları ve çelik tozu gibi maddelerin kullanılması önerilmektedir. Bu çalışmada betonlara belli oranlarda cam lifi
katılarak aşınma dayanımı araştırılmıştır. Betonda aşınma kaybı farklı etkiler sonucunda meydana geldiği için genelde aşınma dayanımı belirleyen tek bir deney yöntemi yoktur. Ancak beton basınç dayanımı ile aşınma dayanımı arasında genel bir ilişki kurulabilmektedir.

Aşınma kaybın bulunusu aşağıda belirtilen iki yöntemden biri ile yapılabilir.

Bu nedenle aşınma dayanını Böhme yöntemi ile yapılanlar. Böhme yöntemi TY 699' a göre yapılmıştır.

5.3.2. Deney yöntemi ve sonuçlar

Betonda cam lifler kullanılarak sürünme dayanımının tespiti ile ilgili herhangi bir çalışmının yapılmadığı yapılan araştırmalar neticesinde görülmüştür. Bu nedenle bir deneySEL çalışma yapılarak betona belli oranlarda cam lifler katılarak sürünme yolu ile aşınma dayanımı araştırılmıştır.

Beton numunelere belirlir oranlarda cam lifler katılarak elde edilen numuneler üzerinde Böhme metodu ile ve TS 2824' e uygun olarak aşınma kayıpları belirlenmiştir. Sonuçlar beton basınç dayanımları ve katkı yüzdeleri ile ilişkili olarak yorumlanmıştır.

Böhme metodu ile sertleşmiş betonlarda sürünme yolu ile aşınma kaybı deneyi TS 699’ a uygun olarak yapılmış olup, elde edilen sonuçlar TS 2824 esasına göre Tablo 5.3’de verilmiştir. Beton karışımından elde edilen 100 mm. boylu kübik numuneler %90 bağlı nemedir günün geketildikten sonra 23°C sıcaklıkları suda deney güne kadar bekletilmişdir. Numuneler 28 günlük iken kesilerek 70 mm.’lik küpler haline getirilip deneye hazır duruma getirilmişdir.
Böhme aleti yaklaşık 750 mm. çapında bir disk, dakikada 30 devir dönmesini sağlayan bir motor, devir sayısını gösteren numarator ve her 22 devir tamamlanlığında motoru otomatik olarak durdurun bir mekanizmaya sahiptir (Albayrak, 1985). Böhme aşındırma deneyi; numunelerin kalmılıklarında veya hacimlerinde meydana gelen azalanın ölçülmesi suretiyle yapılır. Bu çalışmada sürünme yolu ile aşınma kaybının bulunmasında, hacim azalmasının ölçülmesi tercih edilmiş ve sonuçlar buna göre değerlendirilmiştir. Bu amaçla hazırlanın 28 günlük numuneler yeni yükseklıklarına kadar 23°C’deki su içine batırlarak 1 saat bekletildikten sonra su seviyesi numunelerin üst yüzünden 20 cm. yukarıya çıkarılmış ve 24 saat süre ile bu konumda bırakılmışlardır. Bu süre sonunda beton numune Arşimed terazisinde tartılarak (A_{an}) değeri bulunmuştur. Hemen sonra, numune yüzeyi havlu ile kurulanp havada tartılarak (A_{aky}) değeri bulunmuştur. Bütün tartılar 0.1 g. duyarlılıkta yapılmıştır. Numune hacimleri;

$$H_0 = A_{aky} - A_{an}$$

olarak hesaplandıktan sonra, numuneler oda sıcaklığında %50 bağıl nemli ortamda 48 saat süre ile bekleterek havada kurutulmuşlardır. Böhme cihazının sürünme şeridine 20 g. standart zımpara tozu serpildikten sonra numune yerleştirilmiş ve çelik manivela aracılığı ile yükleme koluna 6 kg. yüklenerek disk harekete geçirilmiştir. Toplam 352 devir sonunda numune orta sertlikte bir kul fişça ile temizlenmiş ve yine 0.1 g. duyarlılıkta tartılarak son hacmi (H_s) bulunmuştur. Sürünme yolu ile aşınma kaybı (AK), yüzey alanı (A) olan bir numune için:

$$AK = \frac{(H_0 - H_s)}{A} \times \frac{50 \text{ cm}^3}{50 \text{ cm}^2}$$

olarak hesaplanmıştır.

AK : Aşırık kayıbı cm3/cm2

H_0 : Aşınma öncesi numune hacmi (cm3), (A_{aky} - A_{an})

A_{an} : Su emme deneyine tabi tutulmuş numunelerin Arşimed terazisinde ağırlığı (g.)

A_{aky} : Arşimed terazisinde ağırlığı bulunan numunelerin DYK halde havada ağırlığı (g.)
\(H_0 \) : Aşınma periyotları sonunda numune hacmi (cm\(^3\))

\(A \) : Numunenin aşınma yüzeyi alanı (50cm\(^2\))

Deney sonuçları her beton karşımından 6 numunenin ortalaması alınarak bulunmuştur. Bulunan sonuçların ortalaması Tablo 5.4’de verilmiştir.

5.3.3. Tartışma

TS 2824’e göre sürtünme yolu ile aşınma kaybı değeri 50 cm\(^2\) de ortalama 13 cm\(^3\) den fazla ise beton aşınmaya karşı mukavemetsiz kabul edilir (TS 2824, 1989). Bu değerlendirmeye göre Tablo 5.4’deki (AK) sonuçlar deneylerde kullanılan bütün beton karşımlarının aşınmaya karşı dayanıklı olduklarını göstermektedir.

%0,2 lif katkılı numunelerin aşınma kaybı azalırken diğer lif oranlarında aşınma kaybı artmaktadır. Lif oranlarına bağlı olarak aşınma kaybının değişimi Şekil 5.3’de görülmektedir.

Tablo 5.4. Cam Lif Katkılı Betonlarda Sürtünme Yolu İle Aşınma Kaybı

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Lif Oranı (%)</th>
<th>(A) (cm(^2))</th>
<th>(H_0) (cm(^3))</th>
<th>(H_4) (cm(^3))</th>
<th>AK (cm(^3)/50 cm(^2))</th>
<th>Kontrol (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0</td>
<td>49.2</td>
<td>271.2</td>
<td>266.5</td>
<td>4.8</td>
<td>100</td>
</tr>
<tr>
<td>L2</td>
<td>0.2</td>
<td>49.2</td>
<td>268.1</td>
<td>263.8</td>
<td>4.4</td>
<td>92</td>
</tr>
<tr>
<td>L4</td>
<td>0.4</td>
<td>49.3</td>
<td>267.3</td>
<td>260.3</td>
<td>7.1</td>
<td>148</td>
</tr>
<tr>
<td>L6</td>
<td>0.6</td>
<td>49.3</td>
<td>268.2</td>
<td>260.5</td>
<td>7.8</td>
<td>163</td>
</tr>
</tbody>
</table>
Şekil 5.3. Cam lifin betonlarda sürünme yolunun ileri aşınma kayına etkisi

Sonuç olarak cam lifi betonlarda katkı maddesi olarak kullanıldığında sürünme yolunun ileri aşınma kaybı %0.2 lif oranına kadar azalmakta diğer lif oranlarında ise artmaktadır. Yani netice olarak cam lifin beton borularda da kullanılması aşınma yönünden problem teşkil etmeyecektir.

5.4. Eksenel Çekme Dayanımı

5.4.1. Giriş

Son zamanlarda beton teknolojisine; çelik, cam ve bazı plastik lifleri içeren bir beton takviye sınıfi girmiştir. Bu yeni malzemenin üretiminde geçen 20 yılda epeyce büyük araştırmalar ve gelişmeler olmuştur. Bu alanda ilk olarak asbest lifleri kullanılmıştır. Asbest ewayının çimento matriksta içindeki depolanması, ince duvarlı enine

Daha sonra asbestin uygun olmayan kullanımlarda kanser yapıcı ince tozlar taşıdığı ortaya çıkmca, Elyaf Çimento Endüstrisi, 70’li senelerden beri büyük harcamalar yaparak asbestli elyaf çimentonun yerini alabilecek maddeleri araştırmuştur.

Bu alanda kullanımı en çok araştırılmış olan lifler; demir, cam, polipropilen ve karbon lifleridir. Bu takviye malzemelerinin betonun çekme gerilmesini önemli ölçüde artırttığı görülmüştür. Bu çalışmada ise cam liflerinin betonun çekme dayanımı üzerindeki etkisi araştırılmıştır.

5.4.2. Deney yöntemi ve sonuçlar

Numuneler çekme makinasının çeneleri arası yerleştirilir ve arada boşluk kalmayacak şekilde ayarlandıkları sonra çekme işlemine başlanır. Dakikada 100 kg’lık çekme kuvveti uygulayan makina, numunede boy değişimini gözelecek için Kumparatör bağlanır ve 10 kg’da bir boy değişimi okunarak kaydedilir. Makina nihai çekme dayanımına ulaştığı an durur ve böylelikle numunenin taşıyacağı maksimum çekme kuvveti (C_k) hesaplanır. Çekme deneyinde kullanılan kalbin ebatları Şekil 5.4’de verilmiştir.

Hazırlanan numuneler 28 gün sonra deneye tabi tutulmuş ve bulunan çekme dayanımları hesaplanarak Tablo 5.5’de verilmiştir. Bu değer $\sigma_{85}=C_k/A$ formülünde yerine yazılıarak kesitin taşıdığı maksimum çekme gerilmesi bulunmuş olur.

Şekil 5.4. Eksenel Çekme Deneyi İçin Kullanılan Kalbin Ebatları (mm)

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Lif Muhtevası (%)</th>
<th>Çekme Kuvveti (28 Günlük) (kg)</th>
<th>Çekme Dayanımı (N/mm²)</th>
<th>Kontrol (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-</td>
<td>820</td>
<td>860</td>
<td>800</td>
</tr>
<tr>
<td>L2</td>
<td>0.2</td>
<td>1090</td>
<td>780</td>
<td>860</td>
</tr>
<tr>
<td>L4</td>
<td>0.4</td>
<td>1400</td>
<td>1200</td>
<td>1020</td>
</tr>
<tr>
<td>L6</td>
<td>0.6</td>
<td>1350</td>
<td>1840</td>
<td>1800</td>
</tr>
</tbody>
</table>
5.4.3. Tartışma

Eksenel çekme gerilmesi, eğilme mukavemeti kadar önemli olmasa da, numunenin göstereceği özellikler hakkında bilgi elde etmek için önemlidir. Eksenel çekme gerilmesinde de eğilmede olduğu gibi, lif oranı arttıkca çekme gerilmesi ve deplasman artmaktadır. Lif oranının artmasıyla Tablo 5.5'de görüldüğü gibi %100'üne varan bir artış sağlanmıştır. Lif oranlarına bağlı olarak eksenel çekme gerilmesinin değişimi Şekil 5.5'de verilmiştir. Ayrıca lif oranlarına bağlı olarak numunelerdeki uzama miktarlarının değişimi de Şekil 5.6'da görülmektedir.

Çekme deneyi altında numunelerde meydana gelen uzamalar ölçülüş ve bulunan sonuçlar Tablo 5.6'da gösterilmiştir. Tablodaki değerlerden de görüldüğü gibi lif oranı arttıkça numunelerdeki uzamalar da büyük bir oranda artmaktadır.

Şekil 5.5. Lif Oranlarına Bağlı Olarak Eksenel Çekme Dayanımlarının Değişimi

Tablo 5.6. Çekme Deneyi Altında Uzama Miktarları

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Lif Muhtevası (%)</th>
<th>Uzama Miktarı (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-</td>
<td>1.84</td>
</tr>
<tr>
<td>L2</td>
<td>0.2</td>
<td>2.02</td>
</tr>
<tr>
<td>L4</td>
<td>0.4</td>
<td>2.68</td>
</tr>
<tr>
<td>L6</td>
<td>0.6</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Şekil 5.6. Lif Oranlarına Bağlı Olarak Numunelerde Meydana Gelen Uzama Miktarlarının Değişimi

Sonuç olarak cam lif katı betonlarda lif oranın çekme dayanımı üzerinde çok önemli katkısının olduğu görülmiştir. Beton borularında kullanılarakın çok önemli avantajlar sağlayacağı ve faydalı olacağını tespit edilmiştir.

5.5. Cam lifli malzemelerin çekme dayanımı için alternatif bir çözüm

5.5.1. Giriş

5.5.2. Deney yöntemi ve sonuçlar

Çekme dayanımı için TS 3114 esasına göre hazırlanan beton hamuru Şekil 5.7'de ölçüleri verilen kalıplara yerleştirilerek sarsma tablasında sarsılduktan ve üzerine düzeltildikten sonra 23 ± 2 °C'deki kür odasında %90 bağlı nemde koruma altına alınır. Burada bir tam gün bekletildikten sonra 23 ± 2 °C'de değişmez sıcaklıkta su tankına alınır. Numuneler 28 gün suda bekletildikten sonra sudan çıkarılır ve 2 gün oda şartlarında kurutulduktan sonra deneye tabi tutulur.

Numuneler Şekil 5.7'de görüldüğü gibi özel olarak hazırlanmış deney setine yerleştirilir ve arada boşluk kalmayacak şekilde ayarlandıktan sonra basınç presi altında yük verilerek çekme işlemine başlanır. Yükleme esnasında her numunenin yapmış olduğu uzama kumparatorlarla ayrı ayrı ölçürlər ve bu değişimler ölçülerek kaydedilir. Makine nihai çekme kuvvetine ulaştığı an (numune yük almayıp koştuğu an) durur ve böylelikle numunenin taşıyacağı maksimum çekme kuvveti hesaplanır (Cₖ) hesaplanır. Bu değer σₑ=Cₖ/A formülünde yerine yazılara kesitin taşıdığı maksimum çekme gerilmesi bulunmuş olur. Şekil 5.7'de eksenel çekme deneyinde kullanılan kalıbnın ebatları ve şekli verilmiştir. Diğer deneylerde kullanılan karışım oranlarının aynı miktarları bu deney için de kullanılmıştır. Bu şekilde yapılan deney tekniğinin eksenel çekme deneyinden farklı çekme olayının direkt olmadığıdır. Bu deneyde çekme olayı basınç etkisi altında gerçekleşmektedir. Deneyin yapılışı ve deney aleti Şekil 5.8'de gösterilmiştir.

![Şekil 5.7. Eksenel Çekme Deneyi İÇin Kullanılan Kalıbın Ebatları](image)

Kalıbnın derinliği 10 cm'dir.
Şekil 5.8. Eksenel Çekme Deneyi İçin Özel Olarak Yapılmış Deney Aleti

Yapılan deneyler neticesinde basınç presi altında meydana gelen yüklerden faydalanarak çekme yükleri bulunmaktadır. Daha sonra bu değerler kesit alanına bölünerek çekme dayanımları hesaplanmıştır. Bulunan dayanımlar ve uzama miktarları Tablo 5.7'de verilmiştir.

Tablo 5.7. Basınç Etkisi Altında Betonda Meydana Gelen Çekme Dayanımı

<table>
<thead>
<tr>
<th>Lif Oranı (%)</th>
<th>Kopma Yükleri (kg)</th>
<th>Ortalama Yük (kg)</th>
<th>Çekme Yükleri (kg)</th>
<th>Çekme Dayanımı (N/mm²)</th>
<th>Uzama Miktarı (mm)</th>
<th>Artış Oranı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2400</td>
<td>2500</td>
<td>2300</td>
<td>2400</td>
<td>1442</td>
<td>7.21</td>
</tr>
<tr>
<td>0.2</td>
<td>2700</td>
<td>2800</td>
<td>2900</td>
<td>2800</td>
<td>1682</td>
<td>8.41</td>
</tr>
<tr>
<td>0.4</td>
<td>4000</td>
<td>3900</td>
<td>3800</td>
<td>3900</td>
<td>2343</td>
<td>11.72</td>
</tr>
<tr>
<td>0.6</td>
<td>4600</td>
<td>4680</td>
<td>4700</td>
<td>4660</td>
<td>2808</td>
<td>14.04</td>
</tr>
</tbody>
</table>

(28 Günlük)
5.5.3. Tartışma

Eksenel çekme gerilmesi numunenin göstereceği özellikler hakkında bilgi elde etmek için önemlidir. Eksenel çekme gerilmesinde lif oranı arttıkça çekme gerilmesi ve deplasman artmaktadır. Tablo 5.6’da da görüldüğü gibi lif oranı %0.6’ya çıkardığıında çekme gerilmesi %94.74 oranında artmaktadır. Lif oranlarına bağlı olarak çekme dayanımlarının değişimi Şekil 5.9’da görülmektedir.

Şekil 5.9. Lif Oranlarına Bağlı Olarak Çekme Dayanımının Değişimi
Şekil 5.10. Lif Oranlarına Bağlı Olarak Uzama Miktarlarının Değişimi

5.6. Eğilme Dayanımı

5.6.1. Giriş

Egilme dayanımı, cam lifli malzemeden araştırılmasında en önemli özellikleri. Çünkü betonun kullanımı, basınç gerilimlerine nazaran çok küçük çekme gerilmesine sahip olması nedeni ile sınırlanır. Bu eksik sertlik nispeten düşük çekme kırılma gerilmesinin bir sonucudur. Bu nedenle takviye sağlanmaz, çekme kırılmasını gevrek ve ani bir şekilde olabilir.

Betonun bu eksik dayanımı, genellikle çekme gerilmesini taşımak için betona yerleştirilen çelik çubuklar ile veya ön germeli elemanların teşkili ile giderilmeye çalışılır. Hiçbiri betonun sahip olduğu özellikleri değiştirmez, fakat betonun veya çeliğin tek başına kullanımının imkansız veya ekonomik olmayacağı durumlarda kullanılabacak kompozit malzemeler bunu mümkün kılarabilir.

Bu araştırmada kullanılan cam lif, beton içerisinde homojen yayılmış donatı aksami gibi çarşaf, beton içerisinde üç boyutlu bir mikro donatı vazifesi görmüş, ve betonun eğilme dayanısını önemli ölçüde artmışştur.
Bu araştırmada eğilme dayanımı iki mesnetli ve tek mesnetli olmak üzere iki durumda yapılmıştır. Her iki durum içinde eğilme dayanımları bulunmuş ve karşılaştırılmıştır.

5.6.2. Deney yöntemi ve sonuçlar

Deneyde kullanılacak numuneler TS 2940’a göre alınmış ve TS 3068’e göre hazırlanmış ve bakımı yapılmıştır. Eğilme dayanımında lif oranına bağlı olarak sürekli bir artış gözlemdiği için lif oranı %0.6’ya kadar arttırılmıştır. Hazırlanan beton harcı 10x10x50 cm ebadındaki prizmatik kalıplara yerleştirilmiş ve sarsma tablasında, numunede boşluk kalmayacak şekilde sarsılmış ve sıkıştırılmıştır.

Daha sonra bu numuneler su tankına konulmak üzere 23±2°C’deki kür odasında %90 bağıl nem altında bekletilmiştir. Burada tam bir gün bekletildikten sonra, 23±2°C’de değişmez sıcakluktaki su tankına alınır. Numuneler 28 gün suda bekletildikten sonra sudan çıkarılır ve 2 gün oda şartlarında korunuya bırakılır. İki gün sonunda numuneler, TS 3285’e ve ASTM (C-190) standardına uygun olarak deneye tabii tutulur.

Numuneler Şekil 5.11 ve Şekil 5.12’de tek ve üçte bir noktalarından yüklenmiş basit kirişin yükleme başlığı ve yükleme tablası durumu görülmektedir. Yükleme tablası ve yükleme başlığında mesnet silindirleri, deney uygulanacak numunenin boyuna uygun yatakla oturtulur. Numunenin kalp içerisindeki üstte gelen yüzünün, deney sırasında uygulanacak yüklerin yönüne paralel olması dikkat edilmelidir.
Şekil 5.11. Eğilme Deneyinde Tek Noktadan Yüklenmiş Basit Kirışın Yükleme Başlığı ve Yükleme Tablası Durumu

Şekil 5.12. Eğilme Deneyinde Üçte Bir Noktalarından Yüklenmiş Basit Kirışın Yükleme Başlığı ve Yükleme Tablası Durumu
Deney esnasında deney numunesi ekseninin yatay olması sağlanmalı, yükleme yonu, numunenin yükleme uygulanan yüzeyine dik olmalıdır. Mesnetler arasındaki mesafelerin birbirine eşit olması dikkat edilir ve numunenin ortasından yükleme yapılabilmesi için silindir şeklinde bir demir parçası yerleştirilir.

Aletin presi demire tam oturacak şekilde indirilir ve numunenin orta noktasının yaptığı uzamayı hesaplamak için alete 0.001 mm hassasiyetinde bir kumparator bağlanır. Bütün bu şartlar sağlandıkta sonra aletin yükleme hızı 75 kg/dakika'ya ayarlanır ve deneye başlanır. Basınc presi makinası, beton numunenin taşıyabileceği maksimum kuvvete (P_k) ulaştığı anda yüklemeye otomatik olarak son vermektedir.

Bu arada yükleme yapıldığı esnada her 25 kg'da bir numunenin yaptığı uzama Kumparator'den okunarak kaydedilir ve nihai basınç kuvveti (P_k) tespit edildikten sonra numunenin Eğilme Dayanımı (σ_e) aşağıdaki formülden hesaplanır.

\[
\sigma_e = \frac{3}{2} \frac{P_k}{(b h^2)}
\]

TS 3285'e göre bulunan deney sonuçları Tablo 5.8 ve Tablo 5.9'da verilmiştir.

Tablo 5.8. Tek Noktadan Yüklenmiş Numunelerin Eğilme Dayanımı

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Kırılma Yükleri (kN)</th>
<th>Ortalama Yük (kN)</th>
<th>Eğilme Dayanımı (N/mm²)</th>
<th>Artış Oranı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.41</td>
<td>5.35</td>
<td>5.43</td>
<td>1.63</td>
</tr>
<tr>
<td>2</td>
<td>7.11</td>
<td>7.03</td>
<td>7.00</td>
<td>2.10</td>
</tr>
<tr>
<td>3</td>
<td>7.50</td>
<td>7.46</td>
<td>7.64</td>
<td>2.29</td>
</tr>
<tr>
<td>4</td>
<td>7.88</td>
<td>8.82</td>
<td>8.38</td>
<td>2.52</td>
</tr>
<tr>
<td>5</td>
<td>8.45</td>
<td></td>
<td></td>
<td>54.32</td>
</tr>
</tbody>
</table>
Tablo 5.9. Üçte Bir Noktalardan Yüklenmiş Numunelerin Eğilme Dayanımı

<table>
<thead>
<tr>
<th>Numune No</th>
<th>Kırlıma Yükleri (kN)</th>
<th>Ortalama Yük (kN)</th>
<th>Eğilme Dayanımı (N/mm²)</th>
<th>Artış Oranı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6.58</td>
</tr>
<tr>
<td>K</td>
<td>6.64</td>
<td>6.50</td>
<td>6.60</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>8.10</td>
<td>7.76</td>
<td>7.94</td>
<td>7.93</td>
</tr>
<tr>
<td>L4</td>
<td>8.99</td>
<td>9.25</td>
<td>9.16</td>
<td>9.13</td>
</tr>
<tr>
<td>L6</td>
<td>10.86</td>
<td>10.75</td>
<td>11.50</td>
<td>11.04</td>
</tr>
</tbody>
</table>

5.6.3. Tartışma

Eğilme dayanımı, lif katkılı betonların iyileşen en önemli özelliklerinden biridir. Tablo 5.8 ve Tablo 5.9'daki değerlerden, kontrol numunelerinde, eğilmede çekme gerilmesinin 1.98 N/mm², %0.6 cam lif katkılı nutunlerde bu değerin 3.32 N/mm²'ye yükseldiği görülmektedir. Bu demektir ki cam lif ilave edilmiş numunelerinin çekme dayanımı, yaklaşık olarak üçte bir noktalarda yüklenmiş kırışlerde %67.78 oranında artmaktadır. Tek noktadan yüklenmiş kırışlerde ise bu oran %54.32'ye düşmektedir. Sonuç olarak cam lif katılmış kırışların eğilme dayanımında üçte bir noktadan yüklenmiş kırışların eğilme dayanımı, tek noktadan yüklenmiş kırışların dayanımından daha iyi sonuç vermektedir.

Bu artışlar, küçümsemeyecek derecede önemli artışlardır. Bu özelliklerden dolayı, bu tür malzemelerin; donatı kullanılmayacak kadar küçük ebatlara sahip elamanlarda kullanılması mümkündür. Ayrıca büyük kütle betonlarda, örneğin çekme dayanımının önem kazandığı kırışlere, maliyet gözardı edilmeden, cam liflerin kullanılmasının uygun olacağı söylenebilir.

Ayrıca lif oranı arttıkça deplasman yapma kabiliyeti de artmakta dolayısıyla numunenin sünikliği artmakta, buda daha fazla enerji absorbe edeceğinin anlamına geldiği için depreme dayanıklı yapı tasarımı için de dikkate alınabilecek bir malzeme olabileceğini göstermektedir.
Sonuç olarak lif katkılı numunelerde yapılan eğilme çekme deneylerinde üçte bir noktadan yüklenmiş numunelerin eğilme dayanımlarının tek noktadan yüklenmiş numunelerin eğilme dayanımlarına nazaran daha iyi sonuç verdiği deneylerle tespit edilmiştir. Bunun için cam lif katkılı numunelerin eğilme dayanımı üzerindeki etkileri küçümsenmeyecek derecede önemlidir.
6. CAM LİFLİ BETON BORULAR ÜZERİNDE YAPILAN DENEYLER VE SONUÇLARI

6.1. Tepe Basınç Yükü

6.1.1. Giriş

\[L_1 + t_2 + t_z \]
\[\frac{L_1 + t_2}{2} \]
\[\frac{L_1 + t_2 + t_z}{2} \]

\[L_1 = \text{Boru boyu} \]
\[t_z = \text{Muf derinliği} \]

Şekil 6.1. Basınç Presine Yerleştirilmiş Deney Numunesi
Mesnet ve kuvvet uygulama latalarının “b” genişlikleri ve mesnet araları TS 821’de verilen değerlere uygun olmalıdır. Baskı ve mesnet latalarının genişlikleri Tablo 6.1’de verilmiştir.

6.1.2 Deney yöntemi ve sonuçlar

Borunun latalara (yastık kirişleri ve baskı kirişine) tam olarak intibak edebilmesi ve tepe yükünün boru boyunca uniform olarak yayılabilmesi için, mesnet lataları üzerinde ve baskı latasının geleceği yere boru üzerine 2 - 3 cm kahlincta ve bir şerit şeklinde alçı hamuru serilir. Alçı turnakla çizilmeyecek kadar sertleştiriken sonra kuvvet uygulanmaya başlanır.

Boru numuneleri üzerinde tepe basınç yükü deneyi uygulandığında bulunanak kırılma yükleri daire kesitli beton borular için TS 821’de verilen değerlerden az olmamalıdır. Beton borularda tepe basınç yükü deneyindeki min. kırılma yükleri Tablo 6.2’de verilmiştir.

<table>
<thead>
<tr>
<th>Grup No</th>
<th>Anma Çapı (mm)</th>
<th>Lata Genişliği (b) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>450 ve kadar</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>500-1000</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>1100-1500</td>
<td>165</td>
</tr>
<tr>
<td>4</td>
<td>1750 ve daha büyük</td>
<td>200</td>
</tr>
</tbody>
</table>
Tablo 6.2. Beton Borularda Tepe Başınç Yükü Deneyindeki Min. Kırılma Yükleri

<table>
<thead>
<tr>
<th>Kesit Bicimi</th>
<th>Boru Anma Çapı (mm)</th>
<th>Borunun Her (m) Uzunluğu İçin Minimum Kırılma Yükü (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal cidarlı (kN/m)</td>
</tr>
<tr>
<td>Daire</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>43</td>
</tr>
</tbody>
</table>

Deneylerde yükün hesaplanmasında borunun yaralı uzunluğu alınır. Verilmemiş çaplar için kırılma yük değerleri enterpolasyonla bulunur.

Beton boru imalatında, kullanılabacak beton karışmaları TS 802’ye göre hazırlanmıştır. Karışında kullanılan malzemelerin % olarak miktarları Tablo 6.3’de verilmiştir.

Tablo 6.3. Beton Boru İmalatında Kullanılan Malzeme Karışım Oranları (%)

<table>
<thead>
<tr>
<th>Malzemenin Adı</th>
<th>Karışımdaaki Miktarı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Nolu Agrega</td>
<td>24.1</td>
</tr>
<tr>
<td>2 Nolu Agrega</td>
<td>31.9</td>
</tr>
<tr>
<td>3 Nolu Agrega</td>
<td>16.3</td>
</tr>
<tr>
<td>Çimento</td>
<td>19.9</td>
</tr>
<tr>
<td>Su</td>
<td>7.8</td>
</tr>
<tr>
<td>Cam Lifî</td>
<td>0-0.2-0.4-0.6</td>
</tr>
</tbody>
</table>
Boru yapımında TS 500 ve TS 3830, kalite kontrolü için TS 2940, TS 3068, TS 3351 ve taşma yerleştirmeler, işleme ve kür işlemlerinde TS 1247, TS 1248’deki kurallara uyulmuştur.

Değişik çaplardaki beton borularında yapılan deneyler neticesinde bulunan, 28 günlük tepe basınç yükü değerleri Tablo 6.4’de, 1 yıllık sonuçlar da Tablo 6.5’de verilmiştir. Ayrıca yapılan deneylerin doğruluğunu belirlemek için her boru için ayrı ayrı standart sapma değerleri % olarak bulunmuştur.

Lif oranlarının artış ile tepe basınç yükünde meydana gelen 28 günlük değişimler de Tablo 6.4’de verilmiştir. Tepe basınç deneyi yapılarken beton borulara her 500 kg² da bir meydana gelen yatay ve düşey deplasmanlar strengeler yardımı ile ölçülmüştür.

Tablo 6.4. Değişik Çaplardaki Beton Borular İçin Tepe Basınç Yükü Deney Sonuçları

<table>
<thead>
<tr>
<th>Değişiklik</th>
<th>Boru</th>
<th>Lif Oranı</th>
<th>Cidar Kalınlığı</th>
<th>Boru Boyu</th>
<th>Yık Alan Kısımın Boyu (cm)</th>
<th>Kurılma Yükü (28 günlük)</th>
<th>Orta- lama Yük</th>
<th>Tepe Basınç Yükü (kN/m²)</th>
<th>Artış Oranı</th>
<th>Standart Sapma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bölmeler</td>
<td>Çapi</td>
<td>(%)</td>
<td>(cm)</td>
<td>(cm)</td>
<td>(kg)</td>
<td>(kg)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>-0.2</td>
<td>3.0</td>
<td>150</td>
<td>115</td>
<td>3800 3600 3700</td>
<td>4100 4300 4200</td>
<td>4400 4450 4350</td>
<td>4600 4350 4700</td>
<td>3700 32.17</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>0.4</td>
<td>3.0</td>
<td>150</td>
<td>115</td>
<td>4500 4700 4600</td>
<td>5100 5200 5000</td>
<td>5300 5400 5500</td>
<td>5550 48.26</td>
<td>40.00</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>0.6</td>
<td>3.0</td>
<td>150</td>
<td>115</td>
<td>5600 5400 5500</td>
<td>6200 6250 6450</td>
<td>6300 6450 6300</td>
<td>6700 58.26</td>
<td>5550 40.00</td>
</tr>
<tr>
<td>Daire</td>
<td>20</td>
<td>-0.2</td>
<td>4.5</td>
<td>150</td>
<td>115</td>
<td>6900 7000 7100</td>
<td>7550 7600 7650</td>
<td>8100 8000 8200</td>
<td>8700 75.65</td>
<td>5826</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>0.4</td>
<td>4.5</td>
<td>150</td>
<td>115</td>
<td>9000 9050 9100</td>
<td>9650 9600 9700</td>
<td>10100 10050 10150</td>
<td>10900 95.65</td>
<td>87.83</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>0.6</td>
<td>4.5</td>
<td>150</td>
<td>115</td>
<td>9650 9600 9700</td>
<td>10100 10050 10150</td>
<td>10900 11000 11100</td>
<td>95.65</td>
<td>87.83</td>
</tr>
</tbody>
</table>
Tablo 6.5. Değişik Çaplardaki Beton Borular Için Tepe Basınç Yükü Deney Sonuçları

<table>
<thead>
<tr>
<th>Kesit Biçimi</th>
<th>Boru Çapı (cm)</th>
<th>Lif Oranı (%)</th>
<th>Cidar Kalınlığı (cm)</th>
<th>Boru Boyu (cm)</th>
<th>Yük Alan Kısım Boyu (cm)</th>
<th>Kirılma Yükü (1 Yıllık) (kg)</th>
<th>Ortalama Yük (kg)</th>
<th>Tepe Basıncı Yükü (kN/m) (%)</th>
<th>Artış Oranı (%)</th>
<th>Standart Sapma (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daire</td>
<td>20</td>
<td>0.2</td>
<td>3.0</td>
<td>150</td>
<td>115</td>
<td>4500 4800 4500 4700 40.87</td>
<td>4900 5000 5100 5000 43.45</td>
<td>5200 5400 5600 5600 48.70</td>
<td>5600 6000 5800 5800 50.44</td>
<td>23.40 1.00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.4</td>
<td>4.0</td>
<td>150</td>
<td>115</td>
<td>6100 6100 6400 6200 53.91</td>
<td>6800 7000 6900 6900 60.00</td>
<td>7400 7600 7500 7500 65.22</td>
<td>8000 7900 7800 7900 68.70</td>
<td>27.40 0.87</td>
</tr>
</tbody>
</table>

Aynı şartlarda hazırlanan beton borular bir yıl süre ile asidik ortama maruz bırakılarak tepe basınç yüklerindeki değişimler kaydedilmiştir. Bu işlem 20’lik ve 30’luk borulara uygulanmıştır. Bir yıllık beton borular üzerinde bulunan deney neticeleri Tablo 6.5’de verilmiştir.

6.1.3. Tartışma

Beton boru numuneleri üzerinde yapılan tepe basınç yükü deney sonuçlarının TS 821’de verilen değerlerden az olmadığını görülmektedir. Lifisiz olarak dökülen beton borular ile lifli dökülen beton borular karşılaştırıldığında lifli boruların kirılma yüklerinin lifisiz boruların kirılma yüklerinden daha fazla olduğu Tablo 6.4’de görülmektedir. Lif oranı ve boru çapı arttıkça Şekil 6.2’de de görüldüğü gibi tepe basınç yükleri de artmaktadır.
Şekil 6.2. Lиф Oranlarına Bağlı Olarak Tepe Basıncı Yüklerinin değişimi

Yine aynı şartlarda dökülmüş beton borular, bir yıl toprak altında bekletilerek ve içerisinde pis su ve yağmur suyu geçirerek tepe basınç yükləri bulunmaktadır.

Tablo 6.5'de bulunan sonuçlardan da görüldüğü gibi bir yıl sonunda içerisine cam lifi katılmış boruların dayanımında çok önemli bir artışın olduğu görülmüş. Bir yıl sonunda beton borularında lif oranlarına bağlı olarak tepe basınç yükü değişimi Şekil 6.3'de görülmektedir.
Şekil 6.3. Lif Oranlarına Bağlı Olarak Tepe Basınç Yüklerinin Değişimi (1 Yıllık)

Tepe basınç yükü deneyi yapılırken beton borularda meydana gelen düşey deplasmanlar strengeçlerle ölçülmüştür. Bulunan bu değerlere bağlı olarak yük-deplasman eğrileri Şekil 6.4’de görülmektedir.
Şekil 6.4'de görüldüğü gibi lif oranının artması beton boruların daha fazla deplasman yapmasını sağlamaktadır. Buda beton borunun kırılma enerjisini artırmıştır.

Sonuç olarak %0, 0.2, 0.4 ve %0.6 oranlarında cam lifi katılarak üretilen boruların tepe basınç yüklerinde %25'lere varan bir artışın olduğunu ve TS 821'de verilen kırılma yüklerinin çok üstünde bir kırılma yüküne ulaşıldığını görülmüştür.

Lifi beton borunun uzun süre toprak altında kalmasına rağmen tabiat şartlarından ve asidik ortamdan etkilenmediği ve daha çok dayanma sahip olduğu tespit edilmiştir. Bu durum cam lif katı beton borunun basınçsız pis su ve yağmur suyu inşaatlarında kullanımının çok uygun olacağı göstermiştir.

Cam lifin beton borunun tepe basınçında sağladığı %25'lik artıştan dolayı borunun cidar kalınlığında azaltmaya gidilebileceğini ve daha düşük maliyetlerde beton borunun üretilebileceğini göstermiştir.

6.1.4. Cam lifli beton borularda tepe basınç yükünün teorik olarak hesabı

Aşağıdaki yükleme şekline göre yük ile moment arasında bir bağıntı yazılabilir.

\[M \times \phi = -P \times \left(\frac{\phi}{2}\right)^2 \times (\phi \times \sin \phi + \frac{\cos \phi}{2} - 1) \]

\[M = -P \times \left(\frac{\phi}{2}\right)^2 \times \left(\frac{\pi}{2} - 1\right) \]
M = 0.00143 × P × ϕ²

Burada ϕ = 90° alınmıştır (A. Çakıroğlu, 1983). Boruda meydana gelen moment diyagramını aşağıdaki şekilde çizebiliriz.

Bu noktalarda moment max dir.

P yükü altında boruda meydana gelen gerilme dağılışını aşağıdaki şekilde gösterebiliriz.

Şekilde verilen gerilme dağılışından faydalanarak ayrıca lif oranına, boru çapına, cidar kalınlığına, betonun basınç dayanımına ve lifli betonun çekme gerilmesine bağlı olarak moment değeri hesaplanabilir.
\(T_{fb} \) = Lifli Betonun Çekme Kuvveti,

\(\sigma_t \) = Lifli Betonun Çekme Gerilmesi.

\[
\frac{P_{e}}{P} = \frac{0.41 \times 0.82 \times l \times \tau_d \times d_f}{\sigma_f \times d_f}
\]

\(P_{e} \) = Liflerin Efektif Hacim Yüzdesi,

\(P \) = Liflerin Hacim Bakımından Yüzdesi,

0.41 = Liflerin Gelişgülzel Dağılmında Efektif Oran,

0.42 = Bağ Verimi Faktörü,

\(l \) = Lif Uzunluğu,

\(\tau_d \) = Lif ve Matris Arasındaki Dinamik Bağ Gerilmesi,

\(d_f \) = Lifin Çapı,

\(\sigma_f \) = Çekme Esnasında Liflerde Oluşan Çekme Gerilmesi.

\[
P_{e} \times \sigma_f = (0.41 \times 0.82 \times \tau_d) \times \frac{l}{d_f} \times P
\]

\(P_{e} \times \sigma_f \) = Birim kesit alanında efektif olan liflerin bağ gerilmesi tarafından meydana getirilen ve birim alana etki eden kuvvettir.

\[
\sigma_t = 0.00772 \times \frac{l}{d_f} \times F_{be} \quad (F_{be} \times \sigma_t = \sigma_t)
\]

\[
M_t = \sigma_t x b (t - e) \left(\frac{t}{2} + \frac{e}{2} - \frac{a}{2} \right)
\]
\[f_c = \text{Betonun Basınç Dayanımı,} \]
\[C = \text{Basınç Kuvveti,} \]
\[T_{fc} = \text{Lifli Betonun Çekme Kuvveti.} \]
\[T_{fc} = \sigma_{bx}(t-e) \]
\[M = -P\left(\frac{\varphi}{2}\right)^2 \times \left(\frac{k}{2} - 1\right) = \frac{0.57}{400} \times P \times \varphi^2 = 0.00143 \times P \times \varphi^2 \]
\[M = 0.00143 \times P \times \varphi^2 \]

Her iki durumdaki moment değerleri eşitlenip P yükü çekilirse,
\[0.00143 \times P \times \varphi^2 = \sigma_{bx}(t-e)\left(\frac{t}{2} + \frac{e}{2} - \frac{a}{2}\right) \]
\[P = \frac{\sigma_t \times b}{0.00143 \times \varphi^2} \times (t - e) \times \left(\frac{t}{2} + \frac{e}{2} - \frac{a}{2}\right) \]

\[\varphi = \text{Boru Çapı (mm)}, \]
\[b = \text{Birim Boy} \]
\[\sigma_t = \text{Lifli Betonun Çekme Gerilmesi (Mpa=N/mm²)}, \]
\[t = \text{Cidar Kalınlığı (mm)}. \]

Yukarıdaki C, e ve a değerlerini aşağıdaki formüllerle hesaplayabiliriz.

\[C = \frac{195790 + \sigma_t \times b \times t}{0.85 \times f_c \times b \times (0.75) + \sigma_t \times b \times (1.98)} \]

\[a = 0.75xC \]
\[e = 1.98xC \]

Bu formüller kullanılarak hesaplanan P tepe basınç yükü değerleri Tablo 6.6'da verilmiştir.
Tablo 6.6. DeneySEL Tepe Basınç Yüklerinin Formülle Bulunan Yüklerle Karşılaştırılması

<table>
<thead>
<tr>
<th>Boru Çapı (cm)</th>
<th>Lif Oranı (%)</th>
<th>Cidar Kalmılığı (cm)</th>
<th>Boru Boyu (cm)</th>
<th>(P) (DeneySEL Yük) (kN)</th>
<th>(P) (Formülle Bulunan Yük) (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>32.17</td>
<td>0.4</td>
<td>3.0</td>
<td>36.52</td>
<td>36.52</td>
</tr>
<tr>
<td>0.4</td>
<td>38.26</td>
<td>0.6</td>
<td>3.0</td>
<td>40.00</td>
<td>40.00</td>
</tr>
<tr>
<td>0.6</td>
<td>40.00</td>
<td></td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>40.00</td>
<td>0.4</td>
<td>4.0</td>
<td>44.35</td>
<td>44.35</td>
</tr>
<tr>
<td>0.4</td>
<td>46.96</td>
<td>0.6</td>
<td>4.0</td>
<td>48.26</td>
<td>48.26</td>
</tr>
<tr>
<td>0.6</td>
<td>50.00</td>
<td></td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>47.83</td>
<td>0.4</td>
<td>4.5</td>
<td>52.17</td>
<td>52.17</td>
</tr>
<tr>
<td>0.4</td>
<td>54.78</td>
<td>0.6</td>
<td>4.5</td>
<td>58.26</td>
<td>58.26</td>
</tr>
<tr>
<td>0.6</td>
<td>55.00</td>
<td></td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>60.87</td>
<td>0.4</td>
<td>5.0</td>
<td>66.09</td>
<td>66.09</td>
</tr>
<tr>
<td>0.4</td>
<td>70.43</td>
<td>0.6</td>
<td>5.0</td>
<td>75.65</td>
<td>75.65</td>
</tr>
<tr>
<td>0.6</td>
<td>53.70</td>
<td></td>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>78.70</td>
<td>0.4</td>
<td>6.0</td>
<td>83.91</td>
<td>83.91</td>
</tr>
<tr>
<td>0.4</td>
<td>87.83</td>
<td>0.6</td>
<td>6.0</td>
<td>95.65</td>
<td>95.65</td>
</tr>
<tr>
<td>0.6</td>
<td>58.52</td>
<td></td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2. Sızdırmazlık

6.2.1. Giriş

Beton borularda sı柊 marzozlık deneyi tüm boru üzerinde ve 0.5 barlık bir iç basınç altında yapılmaktadır. Deney düzeneği, boruları düşey veya yatay konumda denemeye uygun 0.05 N/mm² basınç uygulayabilecek şekilde hazırlanmıştır. Basınç ölçme aleti, göstergeli veya piyozometre borusu şeklinde, 0.001 N/mm² duyarlıktaki yapılmıştır. Boru uçundaki tıkaçlar, su sızmışını önleyecek biçimde ve niteliktendir. Su sağlama donanımı, gerekli su miktarlarını ve akışını sağlayacak kapasitede hazırlanmıştır. 0.5 barlık bir basınç altında yapılan sı柊 marzozlık deneyinde islatılan boru iç yüzeyinin her m²'si için boru anma çapına karşılık gelen ilave su miktarları beton borular için Tablo 6.6'da verilmiştir (TS 821, 1993).
Tablo 6.7. Beton Borulara Ait Her m² İç Yüzey Başına İzin Verilen İlave Su Miktarları

<table>
<thead>
<tr>
<th>Kesit Şekli</th>
<th>Boru Çapı (mm)</th>
<th>Islak İç Yüzeyinin Her m²'si için Kabul Edilen İlave Su Miktarları (litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daire</td>
<td>100-250</td>
<td>0.08</td>
</tr>
<tr>
<td>Kesittil</td>
<td>300-600</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>700-1000</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>1100-1500</td>
<td>0.05</td>
</tr>
</tbody>
</table>

6.2.2. Deney yöntemi ve sonuçlar

Sizdirmazlık deneyi, deneye alınmış boruların tamamı üzerinde yapılmıştır. Deney numunesi olarak hazırlanan borular 24 saat süyle dolu olarak tutulmuş ve aynı zamanda boruların dış yüzeylerinin de iıslak olması sağlanmıştır. Daha sonra beton borular düşük konumda tutularak, sizdirmazlık cihazına bağlılanmıştır. Deney sırasında borunun muflu kısmı aşağıya gelecek şekilde yerleştirilmiştir. Borulara yavaşça su doldurulmuş ve bu aşamada havanın tamamen dışarı çıkması sağlanmıştır. Boru tamamen su ile doldurulduktan sonra boru içindeki en düşük basınç 0.05 N/mm² olarak şekilde basınç uygulanmıştır. Basınç uygulandıktan 5 dakika sonra su kayıpları nedeniyle düsebilecek deney basıncı, su eklenerek belirlenen değere yeni den akılanmış ve deney süresi başlamıştır. Deney süresi TS 821’de belirtildiği gibi 15 dakika olarak alınmıştır. 15 dakikanın sonunda, meydana gelen basınç düşmesi su eklenerek dengelemiş ve bu işlem için eklenen su miktarı litre cinsinden belirlenerek kaydedilmiştir. Bütün bu işlemler daha önceden hazırlanmış ve 28 gün bekletilmiş lıfsiz, %0, 0.2, 0.4 ve %0.6 oranlarında lif katkılı borular üzerinde yapılmıştır. Sizdirmazlık deneyi sadece 200’lük borular üzerinde ve üçer adet yapılmıştır.

Beton borularında meydana gelen su kaybı litre cinsinden bulmak için, deney esnasında bulunan su kaybı miktarı borunun isılk iç yüzey alanına bölünmüş ve elde edilen üç değerin ortalaması alınmıştır. Tablo 6.8’de beton borulara ait su kaybı miktarları her lif oranı için ayrı ayrı verilmştir.
Tablo 6.8. Lif Katkılı Beton Borulara Ait Sızdırmazlık Deney Sonuçları

<table>
<thead>
<tr>
<th>Boru Çapı (mm)</th>
<th>Lif Oranı (%)</th>
<th>1 m²'lik İç Yüzeye İlave Edilen Su Miktarı (litre)</th>
<th>Ortalama İlave Edilen Su Miktarı (litre)</th>
<th>İlave Edilen Sudaki Azalma Miktarı (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>-</td>
<td>1</td>
<td>0.075</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.065</td>
<td>0.060</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.060</td>
<td>0.055</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.045</td>
<td>0.055</td>
<td>33.3</td>
</tr>
</tbody>
</table>

6.2.3. Tartışma

TS 821’e göre beton borularda ıslak iç yüzeyinin her m²’si için kabul edilen ilave su miktarı 200’lük borular için 0.08 litreden fazla olmamalıdır. Yapılan sızdırmazlık deneyi bu çerçevede değerlendirildiğinde, lif katkılı beton boruların sızdırmazlığı, lif katkısız beton borulara göre %33.3 oranında bir avantaj sağlamıştır. Tablo 6.8’de de görüldüğü gibi lif oranı arttıkça borulardaki su kaybında azalma olmaktadır. Şekil 6.5’de lif oranlarına bağlı olarak beton borularda meydana gelen su kayıplarının değişimi görülmektedir.

![Su Kayısı (litre) vs Lif Oranı (%)](image)

Şekil 6.5. Beton Borularda Lif Oranlarına Bağlı Olarak Meydana Gelen İlave Su Miktarlarının Değişimi
Sonuç olarak cam lif katkılı beton boruların basınçsız pis su ve yağmur suyu inşaatlarında kullanılmasının çok uygun olacağı belirlenmiştir. Çünkü cam lifler beton boruların imalat hatasından doğabilecek boşlukları doldurup sızmazlığı azaltacaktır. Dolayısıyla pis suların çevrede zarar vermesini asgari dereceye indirecektir.

6.3. Su Emme

6.3.1. Giriş

Beton borularda su emme deneyi, deney için hazırlanmış 28 günlük numuneler üzerinde belirli parçalar alınarak yapılır. Bulunan deney sonuçlarının TS 821’e uygun olup olmadığını kontrol edilir. Daha önceden hazırlanmış lifsiz ve lifli beton borulardan üçer deney numunesi alınarak su emme deneyine hazır duruma getirilir.

6.3.2. Deney yöntemi ve sonuçlar

Su emme deneyi için numune borulardan yaklaşık olarak 10cmx10cm boyutunda birer deney numunesi parçası kesilir. Bu deney parçaları 110°C±5°C sıcaklıklı bir etüde değişmez kütleye gelene kadar kurutulup tartılarak kuru kütle bulunur. Kurutmada, 4 saatlik bir kurutma sonunda %60,1 kadar bir kütle azalmasına ulaşılması halinde, değişmez kütleye erişildiği kabul edilir (aₖ).

Bu şekilde kurutulmuş deney parçaları içecek olarak su içine batılarak 5 saat süre ile kaynatılarak su emdirilmesi sağlanır. Kaynatılmış deney parçaları içinde bulundukları su ile birlikte, oda sıcaklığına gelene kadar soğutulduktan sonra sudan çıkarılırlar tartır (aₛ). Ancak tartı işleminden önce islatılarak sıkılmış bir bez veya sünge yardım ile damlamakta olan su damlarını silinerek numune yüzeyi kurulanır.
Su emme miktarı aşağıdaki formül ile bulunur.

\[S = \frac{a_s - a_k}{a_k} \times 100\% \]

\[S = \text{Su Emme (kütlece)}\% \]
\[a_s = \text{Su Emdirilmiş Kütle} \]
\[a_k = \text{Kuru Kütle} \]

Bulunan sonuçların kuru kütleye göre su emme miktarı %8 den fazla olmamalıdır. Lif oranlarına bağlı olarak bulunan su emme değerleri Tablo 6.9'da verilmektedir.

6.3.3. Tartışma

<table>
<thead>
<tr>
<th>Lif Oranı (%)</th>
<th>Kuru Ağırlık (kg)</th>
<th>Suya Doygun Ağırlık (kg)</th>
<th>Su Emme Oranı %</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>2338</td>
<td>2464</td>
<td>0.053</td>
</tr>
<tr>
<td>0.2</td>
<td>2329</td>
<td>2466</td>
<td>0.058</td>
</tr>
<tr>
<td>0.4</td>
<td>2288</td>
<td>2430</td>
<td>0.062</td>
</tr>
<tr>
<td>0.6</td>
<td>2275</td>
<td>2424</td>
<td>0.065</td>
</tr>
</tbody>
</table>
Şekil 6.6. Lif Oranlarına Bağlı Olarak Su Emme Miktarlarının Değişimi

6.4. Biçim ve Görünüş Muayenesi

6.4.1. Giriş

Beton boruların biçim ve görünüş muayeneleri göze ve elle kontrol edilir. Biçim ve görünüşü uygun olmayan boruların imalattan sonra kontrol edilmesi mümkündür. Muflu beton borularında kırılma ve çatlamalar nedeniyle tolerans değerlerinin zorlanmaması için muf ağının aşağıya gelecek şekilde imalati yapılmalıdır.

6.4.2. Deney yöntemi ve sonuçlar

Beton boruların biçim ve görünüş muayenesi yukarıda da belirtildiği gibi göze ve elle kontrol edilir. Boruları iç ve dış yüzeyleri düzgün, pürüzsüz, köşe ve kenarları düzgün kırıksız ve çapaksız olmalıdır. Ancak bu standartta belirtilen özellikleri olumsuz yönde etkilememek kaydıyla yükseklik veya derinliği 2 mm'yi geçmeyen yüzeydeki gözeneklerin çapak ve çentiklerin gelişigüzel dağılmış örmecık ağına benzeyen yüzeydeki çatıkların genişliği 0.2 mm'yi aşmyorsa beton boruların biçim ve görünüşü uygun kabul edilir. Ancak yüzeyden derinliği 12 mm'yi geçen gözenekleri ihtiva eden boruların
standarda uygun olmadığı kabul edilir. Biçim ve görünüş bakımından daire kesitli boruların Tablo 6.10’da verilen değerlere uygun olması gerekmektedir.

Tablo 6.10. Beton Borularında Kabul Edilen Tolerans Değerleri

<table>
<thead>
<tr>
<th>Boru Çapı (mm)</th>
<th>Kabul Edilebilir Tolerans (mm)</th>
<th>Boru Alan Yüzminin Düzgünliği (mm)</th>
<th>En Küçük Cidar Kalınlığı (mm)</th>
<th>En Küçük Muf Derinliği (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>± 2</td>
<td>3</td>
<td>22</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>± 3</td>
<td>4</td>
<td>26</td>
<td>60</td>
</tr>
<tr>
<td>300</td>
<td>± 4</td>
<td>5</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>400</td>
<td>± 4</td>
<td>6</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>500</td>
<td>± 5</td>
<td>6</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>600</td>
<td>± 6</td>
<td>8</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>700</td>
<td>± 6</td>
<td>8</td>
<td>70</td>
<td>90</td>
</tr>
</tbody>
</table>

6.4.3. Tartışma

TS 821’e göre beton boruların biçim ve görünüş muayeneleri yapılmıştır. Lıflı olarak dökülen beton boruların biçim ve görünüşlerinin daha uygun olduğu gözlenmiştir. Beton boruların iç ve dış yüzeyleri daha düzgün, pürüzsüz, köşe ve kenarları düzgün kırlıksız ve kapaksız olmuştur. Lıflı boruların yüzeyindeki gözeneklerin yüksekliği ve derinliği 2 mm’nin altında olduğu tespit edilmiştir. Sonuç olarak cam lif katkılı beton boruların biçim ve görünüşlerinin daha uygun olduğu ve beton boru imalatında kullanılmasının faydali olacağı gözlenmiştir.

6.5. Alın Yüzünün Düzgünüğünün Muayenesi

6.5.1. Giriş

Beton borularında alın yüzünün düzgünüğünün muayenesi tüm boru üzerinde direk olarak yapılmaktadır. Numune boru eksenleri düşey durumda olacak şekilde uygun bir yere yerleştirilir. Şekil 6.7’de alın yüzünün düzgünüğünün nasıl yapıldığı görülmektedir.
Şekil 6.7. Beton Borularda Alın Yüzünün Düzgünliğünün Muayenesinde Kullanılan Çelik Şablonun Şekli

Daha sonra kolları yeterli uzunlukta ve uygun biçimli özel bir metal şablon, bir kenarı boru dış yüzüne ve doğrultusuna paralel bir durumda uygulanır. Bu şekilde uygulanan şablon boru çevresinde dolaştırılacak, alın yüzeyinin gönşeden en çok ayırdığı noktadaki ayrılma ölçülür.

Yapılan ölçümlerin TS 821’de verilen değerlerle uygun olup olmadığını kontrol edilir. Tablo 6.11’de beton borulardaki alın yüzünün düzgünliği ile ilgili tolerans değerleri verilmiştir.

Tablo 6.11. Beton Borularda Alın Yüzünün Düzgünliğindeki Tolerans Değerleri

<table>
<thead>
<tr>
<th>Boru Çapı (mm)</th>
<th>Boru Çapında Kabul Edilebilen Tolerans Değerleri (mm)</th>
<th>Boru Alın yüzünün Düzgünliğindeki Tolerans Değerleri (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>± 2</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>± 3</td>
<td>4</td>
</tr>
<tr>
<td>300</td>
<td>± 4</td>
<td>5</td>
</tr>
<tr>
<td>400</td>
<td>± 4</td>
<td>6</td>
</tr>
<tr>
<td>500</td>
<td>± 5</td>
<td>6</td>
</tr>
<tr>
<td>600</td>
<td>± 6</td>
<td>8</td>
</tr>
</tbody>
</table>
6.5.2. Deney yöntemi ve sonuçlar

Tablo 6.12’de görüldüğü gibi lif katkılı boruların alın yüzlerindeki düzgünliğinin daha iyi olduğu görülmuştur.

6.5.3. Tartışma

TS 821’e göre Beton boruların alın yüzlerinin düzgünliğünün muayenesi yapılmıştır. Lif katkılı beton boruların daha düzgün olduğu ve standartta verilen değerlerle uygun olduğu gözlemlenmiştir. Bu da lif katkılı beton boruların boru imalatında kullanılmasının uygun olacağı göstermektedir.

Tablo 6.12. Lifli Beton Borularında Alın Yüzünün Düzgünliğünün Deney Sonuçları

<table>
<thead>
<tr>
<th>Kesit Biçimi</th>
<th>Boru Çapı (mm)</th>
<th>Lif Oranı (%)</th>
<th>Cidar Kalınlığı (cm)</th>
<th>Boru Boyu (cm)</th>
<th>Boru Alın Yüzündeki Sapma (mm)</th>
<th>Ortalama Sapma (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daire</td>
<td>20</td>
<td>0.2 0.4 0.6</td>
<td>3.0 150</td>
<td>3.0 3.5 2.5</td>
<td>3.0 2.9 2.8 2.4 2.6 2.0 1.9</td>
<td>3.0 2.9 2.4 2.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.2 0.4 0.6</td>
<td>4.0 150</td>
<td>4.0 3.7 3.7</td>
<td>3.9 3.8 3.7 3.2 3.0 2.8 3.0</td>
<td>3.9 3.8 3.2 2.9</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.2 0.4 0.6</td>
<td>4.5 150</td>
<td>4.2 3.5 3.7</td>
<td>3.8 3.9 4.0 3.6 3.5 3.4 3.5</td>
<td>3.8 4.0 3.6</td>
</tr>
</tbody>
</table>
6.6. Boru İç Yüzünün Düzgünliğünün Muayenesi

6.6.1. Giriş

Beton borularda suyun akışını uygun bir şekilde sağlamak için boru iç yüzünün düzgün ve pürüzsüz olması gerekir. Düzgün olmayan borularda suyun akışında azalmalar olur, birikmelere yol açar ve zamanla tıkanmalara sebep olur. Burada beton borulara %0, 0,2, 0,4 ve %0,6 oranlarında cam lifi katılarak boru iç yüzünün düzgünliği kontrol edilmiştir. Bu muayene Şekil 6.8’de şematik olarak gösterilen bir çelik mastar kullanılarak yapılmıştır. Mastarın uzunluğuna, boru boyundan 30 mm kadar kısa olması ve tam ortasında boru anma boyunun %0,35’i kadar bir çıktıı bulunmalıdır (TS 821, 1993).

6.6.2. Deney yöntemi ve sonuçlar

Hazırlanmış beton boru numunesinin çevresi üzerinde yaklaşık olarak eşit aralıklarla dört nokta işaretlenererek bu noktalarda, uzun kenarı numune eksenine ve geniş yüzü ise değdiği noktadaki çap doğrultusuna paralel olarak tutulan mastar, çıktıı kısımı numuneye dokunacak şekilde numune iç yüzüne değdirilir.

![Şekil 6.8. Boru İç Yüzünün Düzgünlik Muayenesi İçin Kullanılan Çelik Mastar](image)

Lₜ=Anma boyu
a =0,0035 Lₜ
Bu şekilde numunenin iç çevresini yaklaşık olarak dört eşit parçaya bölen muayenede, hiç bir yerde mastarın her iki ucunda numunenin iç yüzüne aynı anda deşmemelidir. Muayenede, mastarın her iki ucunda numunenin iç yüzüne değdiği yerde %0.5 veya daha büyük bir eğrilik bulunduğunu anlaşılmıştır. Borular doğru eksenli ve uzunlukları boyunca kesitleri aynı olacak şekilde yapılmış olmalıdır. TS 821'de açıklanan deney uygulandığında boru iç yüzeyinde bulunacak eğrilik, boru boyunun %0.5'inden büyük olmamalıdır.

Hazırlanmış beton borular üzerinde yapılan deneylerde lif katkı beton boruların iç yüzeylerinin daha düzgün olduğu ve bütün değerlerin %0.5'in altında olduğu gözlemmiştir. Tablo 6.13'de boru iç yüzeyinde meydana gelen eğrilik miktarları % olarak verilmiştir.

<table>
<thead>
<tr>
<th>Boru Çapı (mm)</th>
<th>Boru Boyu (cm)</th>
<th>Lif Oranı (%)</th>
<th>Boru İç Yüzeyindeki Eğrilik (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>150</td>
<td>-</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>0.10</td>
</tr>
<tr>
<td>300</td>
<td>150</td>
<td>-</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>0.08</td>
</tr>
<tr>
<td>400</td>
<td>150</td>
<td>-</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>0.15</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>-</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>0.13</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>-</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.4</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td>0.08</td>
</tr>
</tbody>
</table>
6.6.3. Tartışma

TS 821'e göre yapılan boru iç yüzünün düzgünliği muayenesinde lifli boruların lifsiz borulara nazaran daha düzgün olduğu tespit edilmiştir. Bu durum imalat sırasında dökülen beton boruların taşınması esnasında sarsıtıldan kaynaklanmaktadır. Çünkü lifler beton içerisinde bir nevi donanı görevi gördüğünden sağa sola deplasmanları azaltmaktadır. Bu da boruların daha düzgün ve pürüzsüz olmasını sağlamaktadır. Boru imalatında cam liflerin kullanılmasının yararlıacağı bu deneyle de doğrulanmıştır.
7. CAM LİFLİ BETON BORULARDA GERİLME ANALİZİ ve DEPLASMAN HESABI

Cam lifli beton boruların gerilme analizleri sonlu elemanlar metodu ile yapılmıştır. Gerilme analizleri ve deplasmanlar hesaplanırken Sap 90 programı kullanılmıştır. Hesaplar da elastisite modülü TS 500'de verilen formülten faydalanarak hesaplanmıştır.

Sonlu elemanlarla çözümde kullanılan elastisite modülü'nün formülü aşağıdaki verilmiştir. Deneylerde küp numunelerinin basınç dayanımları bulunduğundan bulunan bu değerler 0.85 ile çarpılarak silindir basınç dayanımları hesaplanmıştır.

\[E_{cj} = 10270.\sqrt{f_{cj}} + 140000 \]

\[E_{cj} = \text{Elastisite Modülü} \]
\[f_{cj} = \text{Betonun Karakteristik Silindir Basınç Dayanımı (28 günlük)} \]

Lif oranlarına bağlı olarak elastisite modülünün değisiimi Tablo 7.1'de verilmiştir.

Tablo 7.1. Lif Oranlarına Bağlı Olarak Elastisite Modüllerinin Değeri

<table>
<thead>
<tr>
<th>Lif oranı (%)</th>
<th>Küp Basınç Dayanımı (kg/cm²)</th>
<th>Silindir Basınç dayanımı (kg/cm²)</th>
<th>Elastisite Modülü (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>415.7</td>
<td>353.345</td>
<td>3.3x10⁵</td>
</tr>
<tr>
<td>0.2</td>
<td>368.3</td>
<td>313.055</td>
<td>3.2x10⁵</td>
</tr>
<tr>
<td>0.4</td>
<td>356.7</td>
<td>303.195</td>
<td>3.2x10⁵</td>
</tr>
<tr>
<td>0.6</td>
<td>320.0</td>
<td>272.000</td>
<td>3.1x10⁵</td>
</tr>
</tbody>
</table>
Tablo 7.1'de de görüldüğü gibi lif oranı arttıkça elastite modülü de azalmaktadır. Poisson oranı da TS 500'de beton için 0.20 olarak alınmıştır. Sap 90 ile yapılan gerilme analiz sonuçları her lif oranı ve her boru için ayrı ayrı bulunmuştur. Bulunan değerler deney sonuçları ile karşılaştırılarak Tablo 7.2'de verilmiştir. Sap 90 ile bulunan deplasman sonuçları her lif oranı ve her boru için ayrı ayrı bulunmuştur. Bulunan değerler Tablo 7.3'de verilmiştir. Yükleme durumuna göre max basınç gerilmesinin 23 ve 63 nolu düğüm noktalarında ve max çekme gerilmesinin ise 343 ile 383 nolu düğüm noktalarında meydana geldiği tespit edilmiştir. Sonuç elemanlara ayrılmış beton boruların meydana gelen gerilmeleri ayrı ayrı hesaplanmış ve Tablo 7.3'de gösterilmiştir. Yataydaki max deplasmanlar 163 ve 203 nolu düğüm noktalarında, düşeydeki max deplasmanlar ise 23 ve 63 nolu düğüm noktalarında meydana gelmektedir.

Tablo 7.2. Cam Lifli Beton Boruların Sap 90 İle Max. Çekme ve Max. Basınç Gerilmelerinin Çözüm Sonuçları

<table>
<thead>
<tr>
<th>Boru Çapı (mm)</th>
<th>Lif Oranı (%)</th>
<th>Teorik Max. Basınç Gerilmesi (kN/m²)</th>
<th>Teorik Max. Çekme Gerilmesi (kN/m²)</th>
<th>Deneysel Çekme Gerilmesi (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>0.779x10⁴</td>
<td>0.774x10⁴</td>
<td>0.721x10⁴</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.884x10⁴</td>
<td>0.878x10⁴</td>
<td>0.841x10⁴</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.926x10⁴</td>
<td>0.920x10⁴</td>
<td>0.117x10⁵</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.969x10⁴</td>
<td>0.962x10⁴</td>
<td>0.140x10⁵</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>0.785x10⁴</td>
<td>0.792x10⁴</td>
<td>0.721x10⁴</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.871x10⁴</td>
<td>0.878x10⁴</td>
<td>0.841x10⁴</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.948x10⁴</td>
<td>0.955x10⁴</td>
<td>0.140x10⁵</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
<td>0.943x10⁴</td>
<td>0.962x10⁴</td>
<td>0.721x10⁴</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.108x10⁴</td>
<td>0.110x10⁵</td>
<td>0.117x10⁵</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.115x10⁵</td>
<td>0.117x10⁵</td>
<td>0.140x10⁵</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>0.118x10⁵</td>
<td>0.121x10⁵</td>
<td>0.721x10⁴</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.136x10⁵</td>
<td>0.140x10⁵</td>
<td>0.117x10⁵</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.147x10⁵</td>
<td>0.150x10⁵</td>
<td>0.140x10⁵</td>
</tr>
<tr>
<td>600</td>
<td>0</td>
<td>0.127x10⁵</td>
<td>0.130x10⁵</td>
<td>0.721x10⁴</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.142x10⁵</td>
<td>0.145x10⁵</td>
<td>0.117x10²</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.154x10⁵</td>
<td>0.158x10⁵</td>
<td>0.140x10²</td>
</tr>
</tbody>
</table>
Tablo 7.3. Cam Lifli Beton Boruların Sap 90 İle Max. Yatay ve Max. Düşey Deplasmanlarının Çözüm Sonuçları

<table>
<thead>
<tr>
<th>Boru Çapı (mm)</th>
<th>Lif Oranı (%)</th>
<th>Max Yatay Deplasman (mm)</th>
<th>Max Düşey Deplasman (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0</td>
<td>0.4543x10⁻⁴</td>
<td>0.5373x10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.5157x10⁻⁴</td>
<td>0.6099x10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.5403x10⁻⁴</td>
<td>0.6390x10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.5648x10⁻⁴</td>
<td>0.6681x10⁻⁴</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>0.7606x10⁻⁴</td>
<td>0.8852x10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.8433x10⁻⁴</td>
<td>0.9815x10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.8929x10⁻⁴</td>
<td>1.039x10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.9176x10⁻⁴</td>
<td>1.068x10⁻⁴</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
<td>0.1404x10⁻³</td>
<td>0.1605x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.1531x10⁻³</td>
<td>0.1751x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.1608x10⁻³</td>
<td>0.1838x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.1710x10⁻³</td>
<td>0.1955x10⁻³</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>0.2419x10⁻³</td>
<td>0.2740x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.2627x10⁻³</td>
<td>0.2975x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.2799x10⁻³</td>
<td>0.3170x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.3007x10⁻³</td>
<td>0.3405x10⁻³</td>
</tr>
<tr>
<td>600</td>
<td>0</td>
<td>0.3128x10⁻³</td>
<td>0.3542x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.3335x10⁻³</td>
<td>0.3777x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.3491x10⁻³</td>
<td>0.3953x10⁻³</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.3802x10⁻³</td>
<td>0.4305x10⁻³</td>
</tr>
</tbody>
</table>
Şekil 7.1. Sonlu Elemanlara Ayrılmış Beton Borunun Yükleme Durumu

Şekil 7.2. Sonlu Elemanlara Ayrılmış Beton Borunun Elemanlara Ayrılmış Durumu
Şekil 7.1. Sonlu Elemanlara ayrılmış Beton Borunun Yükleme Durumu

Şekil 7.2. Sonlu Elemanlara ayrılmış Beton Borunun Elemanlara ayrılmış Durumu
Şekil 7.3. Sonlu Elemanlara Ayrılmış Beton Borunun Düğüm Noktalarına Ayrılmış Durumu

Şekil 7.4. Sonlu Elemanlara Ayrılmış Beton Borunun Yük Altında Deforme Olmuş Halı
Şekil 7.5. Sonlu Elemanlara Ayrılmış Beton Borunun σ_{xx} Gerilme Dağılışı
Şekil 7.6. Sonlu Elemanlara Ayrılmış Beton Borunun σ_{yy} Gerilme Dağılışı
<table>
<thead>
<tr>
<th>İsim</th>
<th>Değer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>2</td>
</tr>
</tbody>
</table>

Şekil 7.7: Sonlu Elemanlar Ayrılmış Beton Borunun τ Gerilme Dağılımı
Şekil 7.8. Sonlu Elemanlara Ayrılmış Beton Borunun S1 Asal Gerilme Dağılışı
Şekil 7.9. Sonlu Elemanlara Ayrılmış Beton Borunun S2 Asal Gerilme Dağılışı
8. EKONOMİK ANALİZ

Tablo 8.1’deki değerlerden faydalanarak her çaptaki beton borunun bir metresinin fiyatı hesaplanyor. Cam lifis olarak üretilmiş $200, 300, 400, 500 ve $600 buhar kürürü (Muflu) beton borularının birim fiyatları Tablo 8.2, 8.3, 8.4, 8.5 ve Tablo 8.6’da verilmiştir. Cam lifis beton boruların ve cam liflerinin birim fiyatları 1997 yılı birim fiyatlarına göre alınmıştır. Bütün lifli boruların bir metresinin fiyatını bulmak için aşağıdaki formül kullanılyor.

\[F = G \times L \times C + f \times 0.75 \]
\[C = \text{Cam lifin fiyatı (TL/kg)} \]
\[f = \text{Beton borunun fiyatı} \]
\[F = \text{Lifli beton borunun fiyatı} \]
\[G = \text{Borunun toplam ağırlığı (kg)} \]
\[L = \text{Lif miktari (％)} \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
<td>m</td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
<td>m³/m³/Ad.</td>
<td>m³/m³/Ad.</td>
<td>m³/m³/Ad.</td>
<td>m³/m³/Ad.</td>
<td>m³/m³/Ad.</td>
<td>m³/m³/Ad.</td>
</tr>
<tr>
<td>150</td>
<td>28</td>
<td>1000</td>
<td>0.018</td>
<td>0.002</td>
<td>0.030</td>
<td>0.003</td>
<td>0.001</td>
<td>0.032</td>
<td>0.001</td>
<td>0.022</td>
<td>0.018</td>
<td>0.022</td>
</tr>
<tr>
<td>200</td>
<td>30</td>
<td>1500</td>
<td>0.047</td>
<td>0.003</td>
<td>0.075</td>
<td>0.005</td>
<td>0.001</td>
<td>0.045</td>
<td>0.001</td>
<td>0.024</td>
<td>0.029</td>
<td>0.029</td>
</tr>
<tr>
<td>250</td>
<td>30</td>
<td>1500</td>
<td>0.074</td>
<td>0.005</td>
<td>0.105</td>
<td>0.001</td>
<td>0.001</td>
<td>0.055</td>
<td>0.001</td>
<td>0.030</td>
<td>0.036</td>
<td>0.036</td>
</tr>
<tr>
<td>300</td>
<td>40</td>
<td>1500</td>
<td>0.106</td>
<td>0.009</td>
<td>0.157</td>
<td>0.016</td>
<td>0.016</td>
<td>0.073</td>
<td>0.009</td>
<td>0.049</td>
<td>0.059</td>
<td>0.059</td>
</tr>
<tr>
<td>350</td>
<td>42</td>
<td>1500</td>
<td>0.144</td>
<td>0.012</td>
<td>0.204</td>
<td>0.020</td>
<td>0.020</td>
<td>0.088</td>
<td>0.016</td>
<td>0.071</td>
<td>0.071</td>
<td>0.071</td>
</tr>
<tr>
<td>400</td>
<td>45</td>
<td>1500</td>
<td>0.188</td>
<td>0.017</td>
<td>0.259</td>
<td>0.028</td>
<td>0.025</td>
<td>0.106</td>
<td>0.012</td>
<td>0.070</td>
<td>0.085</td>
<td>0.085</td>
</tr>
<tr>
<td>450</td>
<td>48</td>
<td>1500</td>
<td>0.228</td>
<td>0.022</td>
<td>0.319</td>
<td>0.037</td>
<td>0.035</td>
<td>0.130</td>
<td>0.015</td>
<td>0.087</td>
<td>0.105</td>
<td>0.105</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
<td>1500</td>
<td>0.262</td>
<td>0.026</td>
<td>0.385</td>
<td>0.044</td>
<td>0.041</td>
<td>0.149</td>
<td>0.019</td>
<td>0.099</td>
<td>0.120</td>
<td>0.120</td>
</tr>
<tr>
<td>600</td>
<td>60</td>
<td>1500</td>
<td>0.424</td>
<td>0.038</td>
<td>0.545</td>
<td>0.074</td>
<td>0.058</td>
<td>0.215</td>
<td>0.144</td>
<td>0.174</td>
<td>0.174</td>
<td>0.174</td>
</tr>
</tbody>
</table>
Tablo 8.2. φ200 mm. Buhar Kürlü (Muflu) Beton Borunun Birim Fiyatı

<table>
<thead>
<tr>
<th>POZ NO: 08.157061</th>
<th>ANALİZİN ADI: φ 200 mm. Buhar Kürlü (Muflu) Beton Boru Hazırlanması</th>
<th>ÖLÇÜ BİRİMİ: Mt</th>
</tr>
</thead>
</table>

NOT: Boru bünyesine giren kum - çakıl ve çimtonun her türlü nakliyesi ve bu nakliyelere ait yükleme, boşaltma, istif bedeli hariç

<table>
<thead>
<tr>
<th>Poz No.</th>
<th>CINSİ</th>
<th>Ölçü Birimi</th>
<th>Miktar</th>
<th>Birim Fiyatı</th>
<th>Tutarı</th>
<th>Bölüm Toplamı</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.601/IB-1</td>
<td>Fabrika amortisman bedeli</td>
<td>Sa</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.003/c</td>
<td>Malzeme</td>
<td>m³</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.006/c</td>
<td>Granüllometrik çakıl</td>
<td>m³</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.008</td>
<td>Çimento</td>
<td>Ton</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.031</td>
<td>Su (Sulama suyu dahil)</td>
<td>m³</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.108</td>
<td>Benzin</td>
<td>Kg</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot</td>
<td>Kg</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot (Fuel Oil karşılığı)</td>
<td>Kg</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.110</td>
<td>Kalıp yağı</td>
<td>Kg</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.112</td>
<td>Elektrik</td>
<td>Kwh</td>
<td>3.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.616/A</td>
<td>Sızdırmazlık contası</td>
<td>Kg</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.403</td>
<td>İşçilik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.404</td>
<td>Makinist</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.404</td>
<td>Operatör</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.409</td>
<td>Formen</td>
<td>Sa</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.501</td>
<td>Düz işçi</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.502</td>
<td>Erbap işçi</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507</td>
<td>Birinci sınıf ustası</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507/1</td>
<td>Birinci sınıf usta yardımcısı</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508</td>
<td>ikinci sınıf usta</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508/1</td>
<td>ikinci sınıf usta yardımcısı</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

İşçilik ve basınç deneyi karşılığı Boru bedelinin % 1'i φ 200 mm. buhar kürlü (Muflu) Beton boru hazırlanmasının 1 mt. fiyatı

\[
F_2 = 90.3 \times 0.002 \times 350 + 451.700 \times 0.75 = 401.985 \text{ TL/m}
\]

\[
F_4 = 90.3 \times 0.004 \times 350 + 451.700 \times 0.75 = 465.195 \text{ TL/m}
\]

\[
F_6 = 90.3 \times 0.006 \times 350 + 451.700 \times 0.75 = 528.405 \text{ TL/m}
\]
Tablo 8.3. φ300 mm. Buhar Kürlü (Muflu) Beton Borunun Birim Fiyatı

NOT: Boru bünüyesine giren kum - çakıl ve çimentonun her türlü nakliyesi ve bu nakliyelere ait yükleme, boşaltma, istif bedeli hariç

<table>
<thead>
<tr>
<th>Poz No.</th>
<th>CINSİ</th>
<th>Ölçü Birimi</th>
<th>Miktar</th>
<th>Birim Fiyatı</th>
<th>Tutarı</th>
<th>Bölüm Toplamı</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.601/IB-1</td>
<td>Fabrika amortisman bedeli</td>
<td>Sa</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.003/c</td>
<td>Granülo metrik çakıl</td>
<td>m³</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.006/c</td>
<td>Granülo metrik kum</td>
<td>m³</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.008</td>
<td>Çimento</td>
<td>Ton</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.031</td>
<td>Su (Sulama suyu dahil)</td>
<td>m³</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.108</td>
<td>Benzin</td>
<td>Kg</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot</td>
<td>Kg</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot (Fuel Oil karşılığı)</td>
<td>Kg</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.110</td>
<td>Kalıp yağı</td>
<td>Kg</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.112</td>
<td>Elektrik</td>
<td>Kwh</td>
<td>3.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.616/A</td>
<td>Sızdırmazlık contası</td>
<td>Kg</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.403</td>
<td>Makinist</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.404</td>
<td>Operatör</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.409</td>
<td>Formen</td>
<td>Sa</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.501</td>
<td>Düz işçi</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.502</td>
<td>Erbab işçi</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507</td>
<td>Birinci sınıf usta</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507/1</td>
<td>Birinci sınıf usta yardımcı</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508</td>
<td>ikinci sınıf usta</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508/1</td>
<td>ikinci sınıf usta yardımcı</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sızdırmazlık ve basınç deneyi deneyi karşılığı Boru bedelinin % 1'i
φ 300 mm. buhar kürlü (Muflu)
Beton borunun hazırlanmasının
1 mt. fiyatı

\[F_2 = 183.3 \times 0.002 \times 350 + 764.409 \times 0.75 = 701.618 \text{ TL/m} \]

\[F_3 = 183.3 \times 0.004 \times 350 + 764.409 \times 0.75 = 829.927 \text{ TL/m} \]

\[F_6 = 183.3 \times 0.006 \times 350 + 764.409 \times 0.75 = 958.237 \text{ TL/m} \]
<table>
<thead>
<tr>
<th>Poz. No.</th>
<th>CİNSİ</th>
<th>Ölçü Birimi</th>
<th>Miktar</th>
<th>Birim Fiyatı</th>
<th>Tutarı</th>
<th>Bölüm Toplamı</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.601/IB-1</td>
<td>Fabrika amortisman bedeli</td>
<td>Sa</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.003/c</td>
<td>Malzeme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.006/c</td>
<td>Granülometrik çakıl</td>
<td>m³</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.008</td>
<td>Granülometrik kum</td>
<td>m³</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.031</td>
<td>Çimento</td>
<td>Tönen</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.108</td>
<td>Su (Sulama suyu dahil)</td>
<td>m³</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Benzin</td>
<td>Kg</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot</td>
<td>Kg</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.110</td>
<td>Mazot (Fuel Oil karşılığı)</td>
<td>Kg</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.112</td>
<td>Kalıp yağlı</td>
<td>Kg</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.616/A</td>
<td>Elektrik</td>
<td>Kw/h</td>
<td>3.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.616/A</td>
<td>Sızdırılmazlık contası</td>
<td>Kg</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.403</td>
<td>İşçilik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.404</td>
<td>Makinist</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.409</td>
<td>Operatör</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.501</td>
<td>Formen</td>
<td>Sa</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.501</td>
<td>Düz işci</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.502</td>
<td>Erbab işçi</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507</td>
<td>Birinci sınıf ustası</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507/1</td>
<td>Birinci sınıf usta yardımcısı</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508</td>
<td>İkinci sınıf usta</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508/1</td>
<td>İkinci sınıf usta yardımcısı</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sızdırılmazlık ve basınç deneyi karşılığı Boru bedelinin % 1'i 400 mm. buhar kurulu (Muflu) Beton boru hazırlanmasının 1 mt. fiyatı

\[
F_2 = 264.5 \times 0.002 \times 350 + 1170.314 \times 0.75 = 1062.886 \text{ TL/m}
\]
\[
F_4 = 264.5 \times 0.004 \times 350 + 1170.314 \times 0.75 = 1248.036 \text{ TL/m}
\]
\[
F_6 = 264.5 \times 0.006 \times 350 + 1170.314 \times 0.75 = 1433.186 \text{ TL/m}
\]
<table>
<thead>
<tr>
<th>POZ NO.</th>
<th>CINSİ</th>
<th>ÖLÇÜ BIRIMİ</th>
<th>MİKTAN</th>
<th>BİRİM FİYATI</th>
<th>TUTAN</th>
<th>BÖLÜM TOLPAMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.601/IB-1</td>
<td>Fabrika amortisman bedeli</td>
<td>Sa</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.003/c</td>
<td>Granülometrik çakıl</td>
<td>m³</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.006/c</td>
<td>Granülometrik kum</td>
<td>m³</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.008</td>
<td>Çimento</td>
<td>Ton</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.031</td>
<td>Sü (Sulama suyu dahil)</td>
<td>m³</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.108</td>
<td>Benzin</td>
<td>Kg</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot</td>
<td>Kg</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot (Fuel Oil karşılığı)</td>
<td>Kg</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.110</td>
<td>Kağan yağlı</td>
<td>Kg</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.112</td>
<td>Elektrik</td>
<td>Kw/h</td>
<td>3.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.616/A</td>
<td>Sızdırmazlık contası</td>
<td>Kg</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.403</td>
<td>Makinen</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.404</td>
<td>Operatör</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.409</td>
<td>Formen</td>
<td>Sa</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.501</td>
<td>Düz işci</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.502</td>
<td>Erbabit işci</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507</td>
<td>Birinci sınıf ustası</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507/1</td>
<td>Birinci sınıf usta yardımcısı</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508</td>
<td>İkinci sınıf ustası</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508/1</td>
<td>İkinci sınıf usta yardımcısı</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>İşçilik</th>
<th>Toplam</th>
<th>1605.251</th>
</tr>
</thead>
</table>

Sızdırmazlık ve basınç deneyi karşılığı Boru bedelinin % 1'i
φ500 mm. buhar kūrlü (Muflu) Beton boru hazırlanmasının
1 mt. fiyatı

\[
F_2 = 374 \times 0.002 \times 350 + 1605.251 \times 0.75 = 1465.738 \text{ TL/m}
\]
\[
F_3 = 374 \times 0.004 \times 350 + 1605.251 \times 0.75 = 1727.538 \text{ TL/m}
\]
\[
F_6 = 374 \times 0.006 \times 350 + 1605.251 \times 0.75 = 1989.338 \text{ TL/m}
\]
Tablo 8.6. φ600 mm. Buhar Kırlı (Muflu) Beton Borunun Birim Fiyatı

<table>
<thead>
<tr>
<th>POZ NO: 08.157061</th>
<th>ANALİZİN ADI: φ 600 mm. Buhar Kırlı (Muflu) Beton Boru Hazırlanması</th>
<th>ÖLCÜ BİRİMİ: Mt</th>
</tr>
</thead>
</table>

NOT: Boru bünyesine giren kum - çakıl ve cementonun her türlü nakliyesi ve bu nakliyelere ait yükleme, boşalma, istif bedeli hariç

<table>
<thead>
<tr>
<th>Poz No.</th>
<th>CINSİ</th>
<th>Ölçü Birimi</th>
<th>Miktar</th>
<th>Birim Fiyatı</th>
<th>Tutarı</th>
<th>Bölüm Toplamı</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.601/IB-1</td>
<td>Fabrika amortisman bedeli</td>
<td>Sa</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.003/c</td>
<td>Granüllometrik çakıl</td>
<td>m³</td>
<td>0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.006/c</td>
<td>Granüllometrik kum</td>
<td>m³</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.008</td>
<td>Çimento</td>
<td>Ton</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.031</td>
<td>Su (Sulama suyu dahil)</td>
<td>m³</td>
<td>0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.108</td>
<td>Benzin</td>
<td>Kg</td>
<td>0.110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot</td>
<td>Kg</td>
<td>0.200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.109</td>
<td>Mazot (Fuel Oil karşılığı)</td>
<td>Kg</td>
<td>2.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.110</td>
<td>Kalıp yağı</td>
<td>Kg</td>
<td>0.040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.112</td>
<td>Elektrik</td>
<td>Kw/h</td>
<td>3.500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04.616/A</td>
<td>Sızdirmazlık contası</td>
<td>Kg</td>
<td>0.070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.403</td>
<td>İşçilik</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.404</td>
<td>Makinist</td>
<td>Sa</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.409</td>
<td>Operatör</td>
<td>Sa</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.501</td>
<td>Düz işçi</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.502</td>
<td>Erbap işçi</td>
<td>Sa</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507</td>
<td>Birinci sınıf usta</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.507/1</td>
<td>Birinci sınıf usta yardımcı</td>
<td>Sa</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508</td>
<td>İkinci sınıf usta</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.508/1</td>
<td>İkinci sınıf usta yardımcı</td>
<td>Sa</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sızdirmazlık ve basınç deneyi karşılığı Boru bedelinin % 1’i
φ500 mm. buhar kırlı (Muflu) Beton boru hazırlanmasının
1 mt. fiyatı

<table>
<thead>
<tr>
<th>Poz No.</th>
<th>CINSİ</th>
<th>Ölçü Birimi</th>
<th>Miktar</th>
<th>Birim Fiyatı</th>
<th>Tutarı</th>
<th>Bölüm Toplamı</th>
</tr>
</thead>
</table>

Toplam

F₂	541.8x0.002x350+2049.909x0.75= 1916.692 TL/m
F₄	541.8x0.004x350+2049.909x0.75= 2295.952 TL/m
F₆	541.8x0.006x350+2049.909x0.75= 2675.212 TL/m
Cam lifli beton boruların analiz sonuçları Tablo 8.7’de verilmiştir. Tablo 8.7’de de görüldüğü gibi %0.2 lif oranına kadar beton boruların maliyetinde %11 civarında bir avantaj sağlanmıştır. %0.2’den sonraki lif oranlarında ise %30’lara varan bir maliyet artışı hesaplanmıştır. Bunun için %0.2 oranında lif kullanılmasının maliyet yönünden uygun olacaği ve %0.2 lif oranından sonra ise uygun olmayacağı hesaplanmıştır. Şekil 8.1’de lif oranlarına bağlı olarak eşdeğer maliyetin değişimi her boru için ayrı ayrı verilmiştir.

Tablo 8.7. Cam Lifli Beton Boruların Lifsiz Borularla Fiyatlarının Mükayesesi

<table>
<thead>
<tr>
<th>Boru Çapı (cm)</th>
<th>Lif Oranı (%)</th>
<th>Cidar Kalınlığı (cm)</th>
<th>Kum + Çakıl + Çimento Miktarı (kg)</th>
<th>Lifsiz Boru Fiyatı (TL/m)</th>
<th>Cidar Kalınlığı Azaltılmış Boru Fiyatı (TL/m)</th>
<th>Lifli Boru Fiyatı (TL/m)</th>
<th>Artış(+) Azalış(−) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>3.0</td>
<td>90.3</td>
<td>451.700</td>
<td>338.775</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>465.195</td>
<td>528.405</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>701.618</td>
<td>829.927</td>
</tr>
<tr>
<td>30</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>4.0</td>
<td>183.3</td>
<td>764.409</td>
<td>573.31</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>829.927</td>
<td>958.237</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1062.886</td>
<td>1248.036</td>
</tr>
<tr>
<td>40</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>4.5</td>
<td>264.5</td>
<td>1170.314</td>
<td>877.74</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1248.036</td>
<td>1433.186</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1465.738</td>
<td>1727.538</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>5.0</td>
<td>374</td>
<td>1605.251</td>
<td>1203.94</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1727.538</td>
<td>1989.338</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1916.692</td>
<td>2295.952</td>
</tr>
<tr>
<td>60</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>6.0</td>
<td>541.8</td>
<td>2049.909</td>
<td>1537.43</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2295.952</td>
<td>2675.212</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2675.212</td>
<td>−30.49</td>
</tr>
</tbody>
</table>

Şekil 8.1. Lif Oranlarına Bağlı Olarak Eşdeğer Maliyetlerin Değişimi
9. SONUÇ ve ÖNERİLER

Cam liflerin beton numuneler ve beton borular üzerindeki etkileri şöyle özetlenebilir:

Cam liflerin beton numuneler üzerindeki etkileri:

- Cam lif katkılı numunelerde boşluk oranının fazla olması, karışıma katılan liflerin fazla su emmesi ve daha az homojen olmasından dolayı, lif oranın artması ile basınç dayanımında azalma olmaktadır. Fakat bu azalma çok düşük değerlerdedir.

- Lif katkılı numunelerde boşluk oluşması ve bu liflerin aderanslarının iyi olmamasından dolayı numunelerin donma-çözülme olayından etkilendiği, yüzeydeki çatıkların fazla gelişikleri fakat, numunelerde lif katkısından dolayı kopmaların olmadığı görülmüştür. Bununla birlikte %0.2 lif oranında az da olsa donma-çözülme miktarının azaldığı görülmektedir. Fakat 1 yıl toprak altında ve açıkta bekletilmiş numunelerin durabilidade yönünden etkilenmediği ve daha fazla dayanma sahib olduğu deneylerle bulunmuştur.

- Cam lifi ilave edilmiş numunelerde sürtünme yolun ile aşınma kaybı %0.2 lif oranına kadar azalmakta diğer lif oranlarında ise artmaktadır. TS 2824’e göre sürtünme yoluyla aşınma kaybı değeri 50 cm² de ortalama 13 cm³'den fazla olmaması gerekmektedir. Yapılan deneyler neticesinde %0.6 lif oranı için aşınma kaybı değeri 7.8 cm³ olarak bulunmuştur. Bu da cam lifli olarak üretilmiş beton boruların aşınma kaybı yönünden her hangi bir sorun teşkil etmeyeceğiini göstermektedir.

- Lif oranının artması ile beton numunelerinin eksenel çekme dayanımları %100 oranında artmaktadır. Yine lif oranına bağlı olarak numunelerin deplasman yapabilme özelliklerinde önemli ölçüde bir artış sağlanmıştır.
- Özel olarak hazırlanan beton numuneler üzerine yapılan basınç altında çekme deneyinde, lif oranı arttıkça çekme dayanımları ve kopma dayanımları artmaktadır. Cam lifler beton içerisinde bir nevi donatı görevi gördüklerinden lifli numunelerde kopmaların daha geç olduğu ve daha fazla deplasman yaptığı deneylerle bulunmuştur. Cam lifsiz olarak hazırlanan deney numunelerinde çekme dayanımı 5.7 N/mm² iken %0.6 lif oranında bu değer 14.04 N/mm² ye ulaşılmaktadır.

-Eğilme deneyinde üçte bir ve tek noktadan yüklenmiş basit kirişlerin eğilme dayanımları lif oranlarına bağlı olarak artabilmektedir. Çünkü lif takviyesi, beton içerisinde üç boyutlu bir mikro donatı vazifesi görmesi nedeni ile, betonun zayıf olan eğilme dayanımında önemli iyileşmeler sağlamakta. Cam lifsiz olarak hazırlanmış numunelerere göre; üçte bir noktaldan yüklenmiş basit kirişlerde cam lifli eğilme dayanımı %67.78; tek noktadan yüklenmiş basit kirişlerde ise %54.32’lik bir artış sağlanmaktadır.

-Cam lif takviyesi beton, asbestle imal edilmiş olan betonlara alternatif olarak düşünülebilir. Bunun başlica sebeplerinden biri asbestli mamullerin uygun olmayan kullanımlarda, kanser yapıcı ince tozlar taşmasıdır. Fakat cam lifli çimento mamullerinde böyle bir durum söz konusu değildir.

-Lifli betonun kullanım amaçlarından biri de, betonda oluşan ve betonun doğal özelliği olarak kabul edilen plastik rötre çatıkları ile termik çatıkları önlemeyebeeldme özelliğidir. Cam lifler, betonun ilk zamanlardaki plastik rötre çatıklarını önemli ölçüde azaltmaktadır. Bu özelliklerinden dolayı, amlan lifler betonun dayanıklılığını arttırmak, ana donatıyı korrozyona karşı korumak, plastik rötre ve termal çatıkları önlemek amacıyla kullanılabilir.
Cam liflerin beton borular üzerindeki etkileri:

-Beton boruların iç ve dış yüzeyleri lif kullanıldığında daha düzgün ve pürüzsüz olmaktadır. Cam lifli beton boruların köşe ve kenarları kırsız ve çapaksızdır. Yüzeydeki gözeneklerin yükseklikleri ve derinlikleri TS 821’ de belirtilen değerlerin altında olduğu ve lifsiz borulara nazaran daha pürüzsüz ve düzgün olduğu yapılan deneylerle tespit edilmiştir.

-TS 821’e göre cam lifli beton boruların alın yüzlerinin düzgünlüğü lifsiz borulara göre daha düzgündür. Lifsiz dökülmüş borularda, ortalama sapma 3.0 mm iken bu değer %0.6 lif oranı için 2.0 mm’ye kadar düşmektedir. Çünkü lifler beton içerisinde bir nevi donatı vazifesi yaptıklarından imalat esnasında sarsıntılardan daha az etkilenmektedirler.

-Boru iç yüzünün düzgünlüğü muayenesinde lifli boruların lifsiz borulara nazaran daha düzgün olduğu yapılan ölçümler sonucu bulunmuştur. TS 821’e göre boru iç yüzeyinde bulunan eğrilik, boru boyunun %5’inden büyük olmaması gerekir. Cam lif katılmış beton borularında bu değer %0.6 lif oranı için %0.08 değerine kadar düşebilmektedir.
- Cam lif katkıları beton borularının sızdırmazlığı, lif katkısı beton borulara göre %33.3 oranında bir avantaj sağlayabilmektedir. Çünkü cam lifler beton boruların imalatı sırasında doğabilecek boşlukları doldurup sızdırmazlığı azaltmaktadır. Dolaysıyla kanalizasyon inşaatlarında kullanıldığında pis suların çevreye zarar vermesini önlemiş olacaktır. Bu özellik gerek insan sağlığı ve gerekse çevrenin temizliği açısından oldukça önemlidir.

- Deney sonuçlarının değerlendirilmesinden elde edilen diğer bir noktada; aynı tepe basınç için cam liflerle üretilmiş beton boruların cidar kalınlığının %25 oranında azaltılabilmesidir. Daha küçük cidar kalınlığına sahip lifli beton boruların ağırlıkları lifsız beton boruların ağırlıklarına göre daha hafif olacaktır. Bu özellikinden dolayı taşınması ve yerine yerleştirilmesi daha kolay olmaktadır. Sonuç olarak, cam liflerin beton numuneler ve beton borular üzerindeki olumlu ve olumsuz etkileri tablo halinde aşağıdaki şekilde verilebilir.

<table>
<thead>
<tr>
<th>Araştıran Özellik</th>
<th>Olumu</th>
<th>Olumsuz</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETON NUMUNELER ÜZERİNDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basınç Dayanımı</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Donma-Çözülme Dayanımı</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Aşınma</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Eksenel Çekme</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Endirekt Çekme</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Eğilme Dayanımı</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>BETON BORULAR ÜZERİNDE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tepe Basınç Yükü</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Sızdırmazlık</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Su Emme</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Biçim ve Görünüş Muayenesi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Alın Yüzünün Düzgünliğinin Muayenesi</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Boru İç Yüzünün Düzgünliğinin Muayenesi</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
KAYNAKLAR

ÇINAR, H., (1975), Tel Lifli Beton Üzerine Bir Araştırma (TÜBİTAK Yayın No: V. Bilim Kongresi, Antalya.

DAHLBLOM, O. AND GUSTAFSSON, P.J., “(1995), Load Capacity of Ig flat bottom Pipes: Fracture Mechanics Analysis of Different Load Configurations”, Report TVSM-7099 (in Swedish), Division of Structural
Mechanics, Lund University.

Reinforced Concrete”, Fiber Reinforced Concrete, ACI Publication SP-81 (Ed. Hoff, G.C.), Detroit, s. 247-266.

