GULEMAN (ELAZIĞ) BÖLGESİ KROM YATAKLARININ
PLATİN GRUBU ELEMENT İÇERİKLERİ VE
JEOKİMYASI

Gülşah BAŞPINAR

YÜKSEK LİSANS TEZİ
JEOLOJİ MÜHENDİSLİĞİ ANABİLİM DALI

Danışman
Yrd. Doç. Dr. Muharrem AKGÜL

ELAZIĞ, 2006
İçindekiler

<table>
<thead>
<tr>
<th>İçindekiler</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>IÇİNDEKİLERİ</td>
<td>I</td>
</tr>
<tr>
<td>ŞEKİLLER LİSTESİ</td>
<td>IV</td>
</tr>
<tr>
<td>TABLOLAR LİSTESİ</td>
<td>VII</td>
</tr>
<tr>
<td>SİMGELEER VE KİSAŁTMLAR</td>
<td>VIII</td>
</tr>
<tr>
<td>ÖZET</td>
<td>IX</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>XII</td>
</tr>
</tbody>
</table>

1. Giriş

1. Çalışmanın Amacı ... 1
2. Çalışma Yöntemi ... 1
3. Coğrafik Konum ... 2
4. Önceki Çalışmalar ... 4

2. Genel Jeoloji

2.1. Bitlis Metamorfitleri ... 9
2.2. Guleman Ofiyoliti .. 10
 2.2.1. Tanım ... 13
 2.2.2. Dağılımı ve Konum .. 15
 2.2.3. Litoljisi ... 16
 2.2.4. Yaş .. 20
2.3. Hazar Karmaşıği ... 20
2.4. Maden Karmaşığı ... 21
2.5. Lice Formasyonu .. 23

3. Tektonizma

4. Petrografî

4.1. Tektonitler ... 26
 4.1.1. Dünit ... 26
 4.1.2. Harzburjit .. 29
4.2. Kümülatlar ... 31
 4.2.1. Dünit ... 31
4.2.2. Verlit ... 33
4.2.3. Klinopiroksenit ... 33
4.2.4. Gabro..36
 4.2.4.1. Olivinli Gabro...36
 4.2.4.2. Klinopiroksenli Gabro..38
4.2.5. Diyabaz..40
4.2.6. Bazalt..43
4.2.7. Serpantin..46

5. JEOKİMYA...50
5.1. Analiz Yöntemleri..50
5.2. Magmatik Kayaçların Adlandırılması...50
5.3. Guleman Ofiyolitine Ait Magmatik Kayaçların Jeokimyasal Özellikleri54
5.4. Magmatik Kayaçların Tektonik Ortamları..58
5.5. İnceleme Alanı ve Yakın Çevresinin Jeotektonik Evrimi......................................65

6. KROM CEVHERLEŞMESİ..68
6.1. Saha Özellikleri ..70
 6.1.1. Ayıpınar Bölgesi Krom Ceşmesi...70
 6.1.2. Kapin Krom Ceşmesi..71
 6.1.3. Şabata Krom Ceşmesi..74
 6.1.4. Kef Bölgesi Krom Ceşmesi...74
 6.1.4.1. Batı Kef Krom Ceşmesi...75
 6.1.4.2. Doğu Kef Krom Ceşmesi..77
6.2. Ceşmenin Makroskobik Özellikleri...79
 6.2.1. Masif Kromit..80
 6.2.2. Saçınmalı - Bantlı Kromit...80
 6.2.3. Nodüler Kromit..81
6.3. Ceşmeler Mineralolojisi..82
 6.3.1. Kromit...82
 6.3.2. Manyetit...86
 6.3.3. Hematit..86
 6.3.4. İlmenit...89
 6.3.5. Nikel Sülfür Mineralleri..90
 6.3.5.1. Pentlandit..92
 6.3.5.2. Millerit...92
6.4. Krom Ceşmelerinin Kökeni..94

7. GULEMAN OFİYOLİTİİN VE KROMLARIN PGE İÇERİĞİ.....................................95
7.1. PGE’lerin Jeokimyası...95
7.1.1. Meteoritlerin PGE İçerikleri...96
7.1.2. Yaygın Kayaç Oluşturan Minerallerdeki PGE Dağlımı...96
7.1.3. Magmatik Kayaçlardaki PGE Dağlımı..96
7.2. PGE’lerin Kullanım Alanları ..97
7.3. Guleman Ofiyolit Ve Kromitlerin PGE İçerikleri..98
7.4. Guleman Bölgesiyle Dünyanın Bazı Bölgelerinin PGE İçerikleri Karşılaştırılması.....108
7.5. Türkiye’deki Bazik-Ultrabazik Kayaçların PGE Metal İçerikleri..............................111

8. EKONOMİK JEOLOJİ...114
9. SONUÇLAR VE ÖNERİLER...115
KAYNAKLAR..117
ÖZGEÇMİŞ..125
ŞEKİLLER LİSTESİ

<table>
<thead>
<tr>
<th>Şekil No</th>
<th>Sayfa No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şekil 1.1. Çalışma alanının yer bulduru haritası</td>
<td>3</td>
</tr>
<tr>
<td>Şekil 2.1. Guleman bölgesinin jeoloji haritası</td>
<td>7</td>
</tr>
<tr>
<td>Şekil 2.2. Guleman Bölgesinin genelleştirilmiş tektonostratigrafik kesiti</td>
<td>8</td>
</tr>
<tr>
<td>Şekil 2.3. Bitlis Metamorfitleri ile Guleman Ofiyoliti arasındaki tektonik ilişki</td>
<td>9</td>
</tr>
<tr>
<td>Şekil 2.4. Türkiye’deki ofiyolitlerin dağılımı</td>
<td>11</td>
</tr>
<tr>
<td>Şekil 2.5. Güney kuşak ofiyolitlerinin dağılımı</td>
<td>12</td>
</tr>
<tr>
<td>Şekil 2.6. Guleman Ofiyolitine ait genel bir görünüm</td>
<td>14</td>
</tr>
<tr>
<td>Şekil 2.7. Guleman Ofiyolitine ait genel bir görünüm</td>
<td>14</td>
</tr>
<tr>
<td>Şekil 2.8. Guleman Ofiyolitine ait tektonit ve kümülat gösteren jeolojik harita</td>
<td>15</td>
</tr>
<tr>
<td>Şekil 2.9. Guleman Ofiyolitinin genelleştirilmiş bölgesel kesiti</td>
<td>17</td>
</tr>
<tr>
<td>Şekil 2.10. Kümülatlara ait tabakalı gabrolar</td>
<td>18</td>
</tr>
<tr>
<td>Şekil 2.11. Kümülatlara ait tabakalı gabrolar</td>
<td>18</td>
</tr>
<tr>
<td>Şekil 2.12. Guleman Ofiyolitine ait piroksenit daykları</td>
<td>19</td>
</tr>
<tr>
<td>Şekil 2.13. Guleman ofiyolitine ait tek diyarıbazar daykları</td>
<td>19</td>
</tr>
<tr>
<td>Şekil 4.1. İri kristalli öz şekilsiz olivinlerin mikroskopta görünümü</td>
<td>27</td>
</tr>
<tr>
<td>Şekil 4.2. Parçalanmış olivinlerin mikroskopta görünümü</td>
<td>27</td>
</tr>
<tr>
<td>Şekil 4.3. Olivinlerde görülen porfiroklastik doku</td>
<td>28</td>
</tr>
<tr>
<td>Şekil 4.4. Dünitlerde olivinlere ait king-bantların mikroskopta görünümü</td>
<td>28</td>
</tr>
<tr>
<td>Şekil 4.5. Tektonitlerle ait harzburjitlerin mikroskopta görünümü</td>
<td>30</td>
</tr>
<tr>
<td>Şekil 4.6. Porphiroklastik doku gösteren harzburjitlerin mikroskopta görünümü</td>
<td>30</td>
</tr>
<tr>
<td>Şekil 4.7. Kümülatlara ait dünitlerin mikroskopta görünümü</td>
<td>32</td>
</tr>
<tr>
<td>Şekil 4.8. Kümülatlara ait dünitlerin mikroskopta görünümü</td>
<td>32</td>
</tr>
<tr>
<td>Şekil 4.9. Kümülatlara ait verlitin mikroskopta görünümü</td>
<td>34</td>
</tr>
<tr>
<td>Şekil 4.10. Verlitlere ait adkümülat dokunun mikroskopta görünümü</td>
<td>34</td>
</tr>
<tr>
<td>Şekil 4.11. Adkümülat doku gösteren klinopiroyksenitin mikroskopta görünümü</td>
<td>35</td>
</tr>
<tr>
<td>Şekil 4.12. Mezokümülat doku gösteren klinopiroyksenitin mikroskopta görünümü</td>
<td>35</td>
</tr>
<tr>
<td>Şekil 4.13. Kümülatlara ait gabroların mikroskobik görünümü</td>
<td>37</td>
</tr>
<tr>
<td>Şekil 4.14. Olivinli gabroların mikroskobik görünümü</td>
<td>37</td>
</tr>
<tr>
<td>Şekil 4.15. Mezokümülat doku gösteren klinopiroyksenli gabroların mikroskobik görünümü</td>
<td>39</td>
</tr>
<tr>
<td>Şekil 4.16. Adkümülat doku gösteren klinopiroyksenli gabroların mikroskopta görünümü</td>
<td>39</td>
</tr>
<tr>
<td>Şekil 4.17. Tek diyarıbazarların tek nikol mikroskobik görünümü</td>
<td>41</td>
</tr>
<tr>
<td>Şekil 4.18. Tek diyarıbazarlarda görülen intergranüler dokunun mikroskobik görünümü</td>
<td>41</td>
</tr>
</tbody>
</table>
Şekil 4.19. Levha dayk karmaşının tek nikol görünümü...42
Şekil 4.20. Levha dayk karmaşında görülen intergranüler dokunun mikroskobik görünümü. 42
Şekil 4.21. Bazaltlarda görülen intersertal dokunun mikroskobik görünümü.44
Şekil 4.22. Bazaltlarda görülen mikroporfirik dokunun mikroskobik görünümü..................44
Şekil 4.23. Bazaltlarda alterasyon sonucu gelişen epidot, klorit, ikincil kuvarslar45
Şekil 4.24. Bazaltlarda görülen kloritli kloriteşmeler...45
Şekil 4.25. Guleman Grubuna ait piroksenlerin bastırmaları..47
Şekil 4.26. Guleman Grubuna ait piroksenlerin bastırmaları..47
Şekil 4.27. Olivinlerin alterasyon sonucu lizardit ve krizotil serpantin minerallerine dönüşmesi48
Şekil 4.28. Serpantinitlerde görülen ağı (mesh) dokunun mikroskopta görünümü..........................48
Şekil 4.29. Serpantinle karışan açığa çıkan demiroksit ve opak minerallerin mikroskopta görünümü ..49
Şekil 5.1. Guleman Ofiyolitine ait örneklerin K2O diyagramı ...53
Şekil 5.2. Guleman Ofiyolitine ait örneklerin SiO2-Zr/ TiO2 diyagramındaki dağılımları........53
Şekil 5.3. Guleman Ofiyolitine ait örneklerin Zr/TiO2-Nb/Y diyagramındaki dağılımları54
Şekil 5.4. Guleman Ofiyolitine ait diyabaz ve bazaltlara ait ana oksitlerin MgO'ya göre değişim diyagramları ..56-57
Şekil 5.5. Guleman Ofiyolitine ait diyabaz ve bazaltlar için Na2O+K2O – SiO2 değişim diyagramı ..59
Şekil 5.6. Guleman Ofiyolitine ait diyabaz ve bazaltlar için FeO - Na2O+K2O- MgO değişim diyagramı ..59
Şekil 5.7 Guleman Ofiyolitine ait örneklerin Ti/100-Zr/Sr/2 diyagramındaki dağılımları........60
Şekil 5.8 Guleman Ofiyolitine ait örneklerin V-Ti diyagramındaki dağılımları......................60
Şekil 5.9. Guleman Ofiyolitine ait örneklerin Zr/Y-Zr diyagramında dağılımları61
Şekil 5.10 Guleman Ofiyolitine ait örneklerin Nb-Zr/4-Y diyagramında dağılımları.61
Şekil 5.11 Guleman Ofiyolitine ait örneklerin Ti-Zr diyagramında dağılımları62
Şekil 5.12. Guleman Ofiyolitine ait örneklerin NTE spider diyagramı..63-64
Şekil 5.13. Bölgenin jeodinamik evrimini gösteren şematik kesit..67
Şekil 6.1. Kefdağ, Kapin, Rut-Taşlıtepe (Guleman-Elazığ) krom yatakları ve çevresinin jeolojisi ...69
Şekil 6.2. Ayıpınar bölgesindeki krom zonlarının istifsel ve yapısal konumları..................70
Şekil 6.3. Kapin krom cevherleşmesi...72
Şekil 6.4. Kapinde harzburjitler içindeki krom cevherleşmesi..73
Şekil 6.5. Kapin krom cevherleşmesine ait refrakter nitelikli cevher..73
Şekil 6.6. Batı Kef Krom Yatağının yapısal konumu…………………………………………….76
Şekil 6.7. Batı Kef Batı Kef bölgesi kromit çevherleştirmelerinin görünümü……………………76
Şekil 6.8. Doğu Kef galeri girişinden bir görünüm………………………………………………78
Şekil 6.9. Doğu Kef galerisinde harzburjitel içerikinde dünit kılıflıla çevrili kromit çevheri…78
Şekil 6.12. Guleman Bölgesinde görülen saçlanmılı-bantlı, kama ve nodüler çevheri……………79
Şekil 6.13. Kromitççe zengin eriyiklerin tektonitler içerisinde diyapirler şeklinde yükselmesi ve gelişen konveksiyon akmları arasında kromitlerin ayrılması………………..81
Şekil 6.14. Poligonal snur ilişkili ve nispeten sağlam taneli kromitlerin mikroskobik görünümü………………………………………………………………………………….82
Şekil 6.15. Öğskelli kromitin mikroskobik görünümü………………………………………………..83
Şekil 6.16. Kromitlerde tektonizmanın etkisiyle gelişen katalaktik doku…………………………83
Şekil 6.17. Masif kromitlerde çek aşırı doğrunun mikroskobik görünümü………………………..85
Şekil 6.18. Masif çevherde kłów düzlemi boyunca yerleşmiş silikat mineral kapanımları….85
Şekil 6.19. Kromit içinde ögeskelli manyetit kapanımları…………………………………………..87
Şekil 6.20. Silikat mineralleri içerisinde manyetit minerali……………………………87
Şekil 6.21. Kromitin kenar ve çatlakları boyunca gelişmiş hematit mineralleri………………..88
Şekil 6.22. Kromitin kenarları boyunca gelişmiş hematit mineralleri……………………………88
Şekil 6.23. Kromitin kenarları ve tane ara boşlukları boyunca gelişmiş demiroksitleşmeler…..89
Şekil 6.24. Ilmenit mineralinin mikroskopta görünümü……………………………………………89
Şekil 6.25. Kromitin kenar ve çatlakları boyunca yerleşmiş Ni- Sülfür mineralleri…………………90
Şekil 6.26. Silikat mineralleri içinde saçımlı olarak Ni- sülfür mineralleri…………………………91
Şekil 6.27. Kromitin tane ara boşlukları boyunca yerleşmiş Ni- sülfür zenginleşmesi………….91
Şekil 6.28. Silikat mineralleri içinde yerleşmiş iri kristalli pendlandit mineralinin mikroskobik görünümü…………………………………………………………………………….92
Şekil 6.29. Silikat mineralleri içine yerleşmiş iri kristalli pendlandit mineralinin mikroskobik görünümü……………………………………………………………………………..93
Şekil 6.30. Kromit taneleri içerisinde prizmatik şekilli milleritin mikroskobik görünümü…93
Şekil 7.3. Guleman Ofiyolitine ait Kapın, Ayıpınar ve Şabata krom örneklerinin PGE spider diyagramları………………………………………………………………………………103
Şekil 7.4. Guleman Ofiyolitine ait Doğu Kef, Batı Kef bölgeleri krom örnekleri ve tüm krom örneklerine ait PGE spider diyagramları…………………………………………………104
Şekil 7.5. Ir’a göre Pt, Pd ve Ni’in korelasyon diyagramları………………………………………106
Şekil 7.6. Ir’a göre Au ve Rh’un korelasyon diyagramları………………………………………107
Şekil 7.7. Toplam PGE’ye göre Ni’in korelasyon diyagramı…………………………………107
TABLOLAR LİSTESİ

Tablo No Sayfa No

Tablo 5.1. Guleman Ofiyolitine ait kayaçların ana oksit, iz element ve nadir toprak element (REE) içerikleri ...51-52
Tablo 7.1. Guleman Ofiyolitine ait kayaç ve krom örneklerinin PGE ve bazı element içerikleri..101
Tablo 7.2. Guleman Ofiyolitine ait örneklerin PGE korelasyon katsayları..108
Tablo 7.3. PGE ’in Guleman Ofiyoliti ve dünyanın diğer bölgeleriyle karşılamaşı................................109-110
Tablo 7.4. Guleman kromit örnekleri analiz sonuçları...112
KISALTMALAR VE SİMGELER

ICP: Inductively Coupled Plasma
MTA: Maden Tetkik Arama
ACME: Analytical Laboratories LTD.
SSZ: Suprasubduction zonu
N-MORB: Normal okyanus ortası sırıtı
E-MORB: Zenginleşmiş okyanus ortası sırıtı
MORB: Okyanus ortası sırıtı bazaltı
REE (NTE): Nadir Toprak Element
Cr: Kromit
Mn: Manyetit
Pn: Pentlandit
Mi: Millerit
Hm: Hematit
Bs: Bastit
Ol: Olivin
Opx: Ortopiroksen
Cpx: Klinopirosen
Plg: Plajiyoklas
Chl: Klorit
Ep: Epidot
T.N: Tek Nikol
Ç.N: Çift Nikol
PGE: Platin Grubu Elementler
ÖZET

Yüksek Lisans Tezi

GULEMAN (ELAZIĞ) BÖLGESİ KROM YATAKLARININ PLATİN GRUBU
ELEMENT İÇERİKLERİ VE JEOKİMYASYI

Gülşah BAŞPINAR

Furat Üniversitesi
Fen Bilimleri Enstitüsü
Jeoloji Mühendisliği Anabilim Dalı
2006, Sayfa:125

İnceleme alanı, Elazığ ilinin yaklaşık 80 km GD’sunda ve Alacakaya ilçesi sınırları içinde yer almaktadır.

Guleman Ofiyoliti; başlica dünit ve kromitit içeren harzburjiterden oluşan tektonitler ile dünit, verlit, klinopiroksenit, gabrolardan oluşan kümülatlar ve tüm bu birimleri kesen tekil diyabaz daykları, levha dayk karmaşığı ve bazik volkanik kayaçlardan oluşur. Guleman Ofiyolitine ait kayaçların jeokimyasal özelliklerini ve oluşturdukları jeotektonik ortamları belirlemek amacı ile 30 adet kayaç örneği ICP-MS yöntemi ile analiz edilmiştir. Buna göre; Ultrabazik kayaçlardan bazik kayaçlara doğru MgO azalmakta buna karşılık SiO₂, Al₂O₃, Fe₂O₃, CaO, Na₂O, K₂O, TiO₂’ın artmasıyla bu kayaçların ultrabazik-bazik karakterler gösterdiği söylenebilmektedir. NTE içerikleri dünit ve harzburjitlerde dedeksiyon limitinin altında veya çok yakın değerlerde iken bazaltlara doğru bu değerler artmaktadır. Guleman ofiyolitine ait magmatik kayaçların tektonik ortam ayırt etmek için kullanılan diyagramlarda değerlendirilmesi sonucu; bu kayaçların okyanus ortası surlarında oluştuğu ve MORB’a benzer jeokimyasal karakterler gösterdiği belirlenmiştir.

Guleman Ofiyolitine ait kayaçların her birinden ikişer adet olmak üzere toplam 8 adet kayaç örneği ve 20 adet kromit örneği Pt, Pd, Rh ve Au için ICP-MS yöntemi ile, Ir ve kromitlerin iz element içerikleri ise Nötron Aktivasyon yöntemi ile analiz edilmiştir. Elde edilen
analiz sonuçları ilksel manto değerlerine göre normalleştirilmiş ve sonuçlar spider diyagramlarında değerlendirilmiştir. Buna göre kayaçlarda; Rh negatif bir anomali gösterip mantoya göre farklılaşır, Pt mantoya yakın ve mantoya göre farklılaşır, Pd mantoya yakın mantoya göre zenginleşmektedir, Au ise yine mantoya göre zenginleşmektedir.

İlk Keşifler: Guleman, ofiyolit, podiform krom yatakları, PGE (Platin Grubu Elementler).
The study area is located in Alacakaya town which is approximately 80 km SE of Elazığ.

Different lithological units are present in Guleman area. These are, from the oldest to the youngest, Paleozoic Bitlis Metamorphites, Upper Cretaceous Guleman Ophiolite, Upper Maastrichtian- Middle Eocene Hazar Group, Middle Eocene Maden Complex and Miocene Lice Formation.

Guleman ophiolite made up of tectonites which comprises dunite and chromite bearing harzburgites and cumulates which contain dunites, wehrlite, clinopyroxenite, gabbros, diabase dykes, sheeted dyke complex and basic volcanites are other constituents of the ophiolite. Thirty rock samples of Guleman Ophiolite were analyzed using ICP-MS methods in order to investigate geochemistry and geotectonic environment of their formation. Analytical data show MgO decrease and SiO₂, Al₂O₃, Fe₂O₃, CaO, Na₂O, K₂O and TiO₂ increases from ultrabasic lithologies towards basic rocks. The REE contents are less than or at around detection limits in dunit and harzburgites and increase towards basalts. Guleman Ophiolites plot in areas indicate formation in mid-oceanic ridges and have the geochemical characteristic of MORB.

Eight rocks samples, 2 from each of dunite, harzburgite, pyroxenite and gabbro and 20 chromite ore samples were analyzed for Pt, Pd, Rh and Au using ICP-MS and for Ir and trace elements using Neutron Activation Methods. The analytical data are normalized for primitive mantle and used in spider diagrams. These diagrams illustrate that the rocks have negative
anomalies for Rh, Pt is close to mantle values, Pd close or show enrichment and Au is enriched in comparison to the mantle. The PGE contents of ore samples vary. Ir shows positive anomaly, Rh negative, Pt and Pd are close to or richer, and Au is richer than the mantle values.

Key Words: Guleman, Ophiolite, podiform chromites deposits, PGE (Platinum Group Elements)
1. GİRİŞ

1.1. Çalışmanın Amacı

‘Guleman (Elazığ) Bölgesi Krom Yataklarının Platin Grubu Element (PGE) içerikleri ve Jeokimyası’ konulu bu çalışmada; ofiyolitik kütleinin petrografik ve jeokimyasal açıdan incelenmesi, bu kayacalar içerisinde yer alan krom yataklarının ve yan kayacalarının jeolojisi ve mineralojiisinin incelenmesi, kromit ve yan kayacalarının Platin Grubu Element (PGE) içerikleri tespit edilip elde edilen jeokimyasal verilerin değerlendirilmesi amaçlanmıştır.

Kromit yatakları yaklaşık 200 km²’lik bir alan kaplayan Jura–Alt Kretase oluşum yasındaki Guleman Ofiyoliti içerisinde podiform tipte geliştiği, kromit cevherleşmelerinin ofiyolitik birimindeki peridotitik kayaklar (dünit, harzburjit) içerisinde yer aldığı daha önceki yıllarda yapılan genel jeoloji, petrografi ve tektonik ağırlıklı çalışmalarında değişik araştırmacılar tarafından incelenmiştir. Ancak krom cevherleşmeinin platin grubu elementlerinin araştırmamasına ait ayrıntılı bir çalışma bulunmamaktadır. Bu çalışmada bölgeye yapılan çalışmalarla ilaveten krom cevherleşmesinin Platin Grubu Elementler açısından incelenmesi amaçlanmıştır.

1.2. Çalışma Yöntemi

Çalışma literatür araştırması, arazi, laboratuar ve büro çalışmalar şeklinde dört aşamada gerçekleştirilmiştir.

Literatür araştırması; arazi çalışmalarından önce başlatılmış ve çalışmanın her aşamasında devam etmiştir. Bu çalışma kapsamında inceleme alanı ve yakın çevresinin jeoloji ve petrografisini konu alan rapor, kitap, ulusal ve uluslararası pek çok makale tarafe salmıştır.

Arazide elde edilen veriler, kayaç örnekleri arazi mevzisinin sona ermesiyle birlikte büroda değerlendirilmiştir. İncelene alanı içerisinde yüzeyleyen kayaç örneklerini yaklaşık 150 adet ince kesit yapılarak polarizan mikroskopta, cevher örneklerinden de yaklaşık 100 adet parlak kesit yapılarak üstten aydınlatmalı cevher mikroskobunda incelenmiştir.

Petrografik incelemeler sonucu alterasyonun olmadığı veya en az olduğu kayaçlar 6 ana gruba ayrılmış ve her gruptan beşer adet olmak üzere toplam 30 adet magmatik kayaç örneğinin ana oksit ve iz element içerikleri, Kanada’daki ACME Analitik Laboratuvarlarında ICP yöntemiyle analiz edilmiştir. Ofiyolit birime ait dünit, harzburjit, piroskenit ve gabro örneklerinden her birinden ikişer adet olmak üzere 8 adet kayaç örneği ve 20 adet kromit örneği PGE içerikleri açısından analiz edilmiştir.
Kayaç örneklerine ait kimyasal analiz sonuçları çeşitli ayırtman diyagramlarda kullanılarak Guleman Ofyolitinin oluşturulduğu jeotektonik ortam yorumlanmıştır.

Yan kayaç ve cevher (kromit) örneklerindeki PGE içerikleri çeşitli diyagramlarda yorumlanarak oluşum ortamı ve ekonomikliği irdelenmiştir.

1.3. Coğrafik Konum

Çalışma alanı, Elazığ ilinin yaklaşık 80 km GD’sunda ve Alacakaya ilcesi sınırlar içinde Türkiye’nin en önemli krom yataklarının bulunduğu Guleman bölgesinde yer almaktadır. Çalışma alanı, Elazığ-Bingöl karayolunun 50. km’sinde güneye doğru ayrılan Alacakaya yolu ile veya Elazığ-Diyarbakır karayolu üzerindeki Maden ilçesinden kuzeye Alacakaya ilcesinden doğru ayrılan stabilize yol ile ulaşılabilir (Şekil 1.1).

Güneydoğu Anadolu sırdağının güney kısmında bulunan Guleman bölgesi güneyinde uzanan Arap Platformunun karşısında coğrafyasına karşılık gayet engebelidir.

Guleman kromit yataklarının olduğu bölgedeki önemli yükseltiler: Mustafa T. (1776m), Aslantaşı T. (1650m), Künofan T. (1720m), Kırmızıtaş T. (1990m), Büyük Sori Dağı (1767m), Rut T. (1711m), Taşlı T. (1395m), Güvenli T. (1457m), Kapın T. (1268m), Şabata T. (1370m), Sori Sarıkaya T. (1467m)’dir.

İnceleme alanı coğrafik konum itibariyle Doğu Anadolu bölgesinde yer alır. İklim bölgeye has karasal iklimdir. Bu bölgede kışlar soğuk ve yağışlı; yazlar ise sıcak ve kurak geçmektedir. Bölgede en soğuk aylar, Ocak-Şubat ayları olup, ortalama sıcaklık 4.1 oC; en sıcak aylar Temmuz-Ağustos ayları olup, ortalama sıcaklık 37.3 oC ve yıllık ortalama sıcaklık ise 13.05 oC’dir.

Şekil 1.1. Çalışma alanının yer bulundu haritası.
1.4. Önceki Çalışmalar

Sungurlu (1979), Güneydoğu Anadolu sürüklenim kuşağı boyunca yapmış olduğu çalışmalarında Guleman Grubu’nun Guleman Ultradazikleri olarak tanımlamaktadır.

Tuna (1979) ve Naz (1979), Elazığ’ın doğu ve kuzeýdoğusunda TPAO adına yaptığı çalışmalarında inceleme alanının stratigrafisi, tektoniği ve kayaçların oluşum ortamlarını incelemiş ve Guleman Grubu’nun Jura – Alt Kretase yaşını olduğunu belirtmişlerdir.

Erdoğan (1982), Ergani–Maden yöresindeki Güneydoğu Anadolu ofiyolit kuşağı’nın jeolojisi ve volcanik kayaçların adlı çalışmasında, Maden Karmasığı ve Guleman Grubu kayaçların jeolojisi ve bunların metamorfizma koşulları ile jeokimyasal özelliklerini incelemişt,
Guleman Grubu bazaltlarının okyanus ortasına sırıştırmış bazaltlarına benzediğini ve ayrıca yeşil istifası fasiyesinde başkaları tarafından ugraydığını belirtmiştir.

Özkan ve Öztunalı (1984), Guleman çevresinde Guleman ofiyolitinin petrografik ve petrolojik özellikleri üzerine yaptığı çalışmalarda, bu kayıtların metamorfizma şartlarını ve yapısal özelliklerini incelemişler ve bunların yüksek sıcaklıklarda plastik deformatyon geçirmiş tektonitler ve deforme olmuş kümatlardan oluştuğunu ve eksik dizi özellikli bir ofiyolit olduğunu belirtmişlerdir. Ayrıca, inceleme alanı doğusunda yer alan Guleman Ofiyolitinin İspendere Ofiyolitinin doğu uzantısı olduğuunu kabul etmişlerdir. Üst Meastrihtiyen yaşlı tortullarla örtülmüş, Guleman Grubu'nun otokton Arap platformu tortulları ve Lice Formasyonu üzerine bindirmiş olduğunu ifade etmişlerdir.

Engin ve Özkan (1985), Guleman bölgesinin yapısal durumunu ve peridotitlerin petrografisini incelemişler.

Bingöl (1986), Guleman ofiyolitinin petrografisini ve petrolojisini üzerine yaptığı çalışmalarda, bunların yüksek sıcaklıklarda plastik deformatyon geçirmiş tektonitler ve deforme olmuş kümatlardan oluştuğunu ve İspendere Ofiyolitinin Guleman Ofiyolitinin batı uzantısı olduğunu belirtmişlerdir.

Aslantaş (2001), Kapin ve Şabata krom çevherleşmesini inceleyerek kromitlerin mineraloijik ve kimyasal özelliklerini belirlemiştir ve bunların Alpin tipi kromitlerle benzer olduklarını belirtmiştir.

Özsoy (2001), Ayrın krom çevherleşmesini incelemiş buradaki çevherleşmenin ortomagmatik evrede kristal eriyik farklılaşması ile okyanus ortası sirtlarda oluşturduğu sonucuna varmıştır.

Örün (2002), Rut ve Lasir bölgesinde krom yataklarının jeolojisi ve jeokimyasal özellikleri incelemiştir.

Çelik (2003), ‘Mastar Dağı (Elazığ GD’su) çevresinin stratigrafik ve tekonik özellikleri’ konulu çalışmasında inceleme alanı içerisinde yer alan Hazar Karmaşığı, Maden Karmaşığı ve Guleman Ofiyolitini ayrıntılı bir şekilde incelemiştir.

Kılıç (2005), ‘Hazar Güöl (Sivrice-Elazığ) Güneyinin Petrografik ve Petrolojik Özellikleri’ konulu çalışmasında inceleme alanı içerisinde yer alan Guleman Ofiyolitlerini incelemış ve bu ofiyolitde manto kayacı olarak harzburjitin olması, kalın ve değişik litolojide bir gabro seviyesinin bulunması Guleman Ofiyolitinin harzburjit tip ofiyolit (HOT) olduğunu , gerek harzburjitlerin varlığı gerekse jeokimyasal verilere dayanarak Guleman Ofiyolitinin bir Supra-Subduction tip ofiyolit olduğunu belirtmiştir.
2. GENEL JELOJİ

İnceleme alanında birçok kaya topluluğu bulunmaktadır. Bunları yaşlıdan genç Paleozoyik yaşlı Bitlis Metamorfitleri, Üst Kretase yaşlı Guleman Ofiyoliti, Üst Meastrihiyen-Orta Eosen yaşlı Hazar Grubu, Orta Eosen yaşlı Maden Karmaşığı ve Miyosen yaşlı Lice Formasyonu oluşturmaktadır (Şekil 2.1, 2.2).

Şekil 2.1 Guleman bölgesinin jeoloji haritası (Özkan, 1983a’dan sadeleştirilerek).

İnceleme alanında kayaçlar geniş çerçevede incelendiğinde başlıca iki yapısal birime ayrılabilmektedir. Bunlardan Lice Formasyonu ve Bitlis Metamorfitleri otokton, Guleman Grubu, Hazar Karmaşığı ve Maden Karmaşığı ise alloktan birimlerdir.
Şekil 2.2 Guleman Bölgesinin genelleştirilmiş tektonostratigrafik kesiti (Erdoğan, 1982).

<table>
<thead>
<tr>
<th>YAŞ</th>
<th>GRUP</th>
<th>BİRİM</th>
<th>KALINLIK</th>
<th>LİTOLOJİ</th>
<th>AÇIKLAMALAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORTA EDSEN</td>
<td>MADEN KARMAŞIĞI</td>
<td>Altvolkanik ve sedimentler</td>
<td>>200 m</td>
<td>Mafik volkaniler (andezit-bazalt), aglomera ve tuf</td>
<td>Yanal ve düşey girik mafik volkanikler karbonatlı kum taşı, kireç taşı, çamur taşı</td>
</tr>
<tr>
<td></td>
<td>ALT KARMAŞIĞI</td>
<td>Altvolkanik ve sedimentler</td>
<td>1000-3000 m</td>
<td>Fosilli kireç taşı</td>
<td>Yer yer volkanik ara katkılı Kum taşı-kıltasi-şeyl-marn-killi kireç taşı ardalanmış</td>
</tr>
<tr>
<td></td>
<td>ALTI KRETAŞE</td>
<td>Bantlı Gabro</td>
<td>>2250 m</td>
<td>Bantlı gabro ve pegmatitik dayklar</td>
<td>Kromit cevherleşmeleri Dünit, harzburgit, lerzolit ve piroksenit yığışmları</td>
</tr>
<tr>
<td></td>
<td>GULEMAN GRUBU</td>
<td>Peridotit</td>
<td>>3000 m</td>
<td>Seyrek kireç taşı araktı, şeyl-kum taşı ardalanması</td>
<td>Seyrek kireç taşı araktı, şeyl-kum taşı ardalanması</td>
</tr>
<tr>
<td></td>
<td>LICE FORM</td>
<td>Filis</td>
<td>>150 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bitlis Metamorfitleri Guleman Ofiyolitleri üzerine tektonik dokanakla gelmektedir. Hazar Karmaşıği ve Maden Karmaşığı bu birimi uyumsuz olarak örtmekte ve bu birimler Alt Miyosen yaşlı Lice Formasyonu üzerine bindirmişlerdir (Şekil 2.2).

2.1. Bitlis Metamorfitleri

Bitlis Metamorfitleri terimi Türkiye’nin güneydoğusunda bulunan metamorfik kayaç topluluğu için kullanılmaktadır (Boray, 1976).

Bitlis Metamorfik Kuşağın, Toros Orjenik Kuşağının doğru kısmını oluşturur ve yaklaşık olarak 300 km uzunluğunda ve 60 km genişliğinde bir yayılma sahiptir. Bu kuşak birbiri üzerine bindirmiş çok sayıdaki tektonik dilimlerden oluşmuştur (Göncüoğlu ve Turhan, 1984).

Bitlis Metamorfitleri incelme alanında kristalize kireçtaşlarından oluşmakta ve Guleman ofiyoliti üzerine tektonik dokanakla gelmektedir (Şekil 2.3).

![Şekil 2.3 Bitlis Metamorfitleri ile Guleman Ofiyoliti arasındaki tektonik ilişki. Baltaşı (Nacaran) Köyünün yaklaşık 1 km güneyi.](image-url)
2.2. Guleman Ofiyoliti (Jura – Alt Kretase)

İlk defa Steinman (1926), tarafından Ligurie'deki ‘serpantin-gabro-spilit’ topluluğunu belirlemek için kullanılan ofiyolit terimi yeşil taşlar, ofiyolit topluluğu, ofiyolit birliği veya ofiyolit karmaşı terimleri şeklinde kullanmıştır. Ancak, bugünkü anlamda eksik bir ofiyolit terimi ve ofiyolitlerin oluşum modelleri 1972 yılında Avrupalı ve Amerikalı jeologlar tarafından; Ofiyolitlerin mafik ve ultramafik kayaçlar topluluğunu, sadece bir kayaç adı olarak kullanılamayacağını ve harita alanında bir litolojik birimi olarak düşünüleceği şeklinde açıklanmıştır (Beyarslan, 1996).

Eksik bir ofiyolit istifi tabandan tavana doğru; esas olarak harzburjit, az oranda dünit ve lerzolitten oluşmuş metamorഫik dokulu tektonitler, dünit, verlit, klinopiroksenit, gabro ve tabakali gabrolardan oluşan kümulatlар, tabakalı gabrolar üzerinde izotrop gabrolar, diyabazlardan oluşan levha dayık karmaşı, bazaltik yastıklı lavlar ve bunlarla birlikte bulunan sedimentlardan oluşur.

Son zamanlarda yapılan çalışmalarında (Boudier ve Nicolas, 1985; Nicolas, 1989) ofiyolitleri litolojik özellikleri ve göstermiş oldukları plastik deformasyon yapılara göre Harzburjit tip ofiyolitler (HOT) ve Lerzolit tip ofiyolitler (LOT) olmak üzere iki gruba ayrılmıştır (Beyarslan, 1996).

Türkiye'de geniş bir yayılm sunan ofiyolitler, Kuzey Kuşak, Orta veya Toros Kuşağı ve Güney Kuşak olmak üzere başlıca üç büyük kuşakta toplanmaktadır (Juteau 1979, Akgül’1993’den) (Şekil 2.4).

1-Kuzey Kuşak: İzmir’den başlayıp, Orhaneli ve Mihalçık Masifleri’nden Ankara ve Erzincan’a kadar uzanmaktadır. Bu kuşaktaki ofiyolitler genellikle mavi şiş ve yeşil şiş fasiyeslerinde metamorfize olmuş ve granodiyoritik ve plütolarla kesilmiştr.

2-Orta veya Toros Kuşağı: Batıdan doğuya doğru Marmaris, Fethiye Antalya, Mersin ve Pozanti–Karsanti ofiyolitlerini kapsamaktadır.

3-Güney Kuşak: Kızıldağ, Bahçe-Kahramanmaraş, Göksun-Elbistan, Karanhkedere, İspendere, Kömürhan, Guleman, Koçali, Kulp, Gevaş, Cilo (Oraman) ve Karadağ ofiyolitlerini kapsamaktadır (Juteau 1979, Akgül’ 1993’den) (Şekil 2.5).
Şekil 2.4. Türkiye'deki otlukların dağılımı (Juteau, 1979; Akgül, 1993'den)
Şekil 2.5 Güney kuşak ofiyolitlerinin dağlxFE (Beyarslan, 1996).

2.2.1. Tanım

Elazığ ilinin yaklaşık 50 km doğusunda Guleman bölgesinde yüzeyleyen ultramafik – mafik kayaçlar, tektonik dilimlenmeye parçalanmış eksik dizi bir ofiyolit topluluğu olarak tanımlanmış ve “Guleman Ofiyolitleri” diye adlandırılmıştır (Engin ve diğer., 1982; Özkan, 1982; Özkan ve Öztunalı, 1984; Engin ve Özkan, 1985) (Şekil 2.6, Şekil 2.7).

Şekil 2.6 Guleman Ofiyolitine ait genel bir görünüm. Baksı yönü Batı Kef tepeden kuzeydoğuya doğrudur.

Şekil 2.7 Guleman Ofiyolitine ait genel bir görünüm. Baksı yönü Batı Kef tepeden doğuya doğrudur.
2.2.2. Dağılım ve Konum

Guleman Ofiyoliti, Elazığ’ın 70 km doğusunda Alacakaya ilcesinde ve yaklaşık 200 km²'lik bir alanı kapsayan mafik–ultramafik kayaç topluluğudur.

Bu birim; tektonitler, küülłatlar tekil dayklar, diyabaz ve bazik volkanik kayaçlardan oluşur (Şekil 2.8).

Bölgede Guleman Ofiyolitleri üzerinde incelemeler yapan Özkan ve Öztunalı (1984), birimin tabanda 5-10 m kalınlığında dünit ve podiform kromit içeren harzburjitlerden oluşmuş tektonitler; dünit-verlit-klinopiroksenit ardalanması ve bantlı gabrolardan oluşmuş küülłatlar ve ofiyolitlerle arazi ilişkisi gözlenmemeyen, ancak genetik olarak ilişkili olduğunu düşünülükleri volkanitlerden oluştuğunu kabul etmektedirler.

Küülłat grubu kayaçlar tektonitlerin üzerinde ve genel olarak onları çevreler konumunda bulunmaktadır (Engin ve diğer., 1982).

Şekil 2.8 Guleman Ofiyolitine ait tektonit ve küülłat gösteren jeolojik harita (Engin, 1984’den sadeleştirilerek).
2.2.3. Litoloji

Guleman Ofiyoliti; başlıca dünit ve kromitit içeren harzburjitlelerden oluşan tektonitler ile bunların üzerine açılı uyumsuzlukla gelen dünit, verlit, klinopiрослönit, tabakalı gabro ve izotrop gabrolardan oluşan kümulatlar, tüm bu birimleri kesen tekil diyabaz daykları ile levha dayık karmaşıği ve bazık volkanik kayaçlardan oluşmaktadır (Şekil 2.9, Şekil 2.10, Şekil 2.11, Şekil 2.12, Şekil 2.13).

Tektonitler inceleme alanında daha çok krom çevherleşmelerinin yer aldığı Sori bölgesinde görülmektedir. Başlıca harzburjit ve dünnitten oluşur ve dünnitlerin harzburjitlere göre bağımlı miktarları daha azdır. Ultramafik tektonitler, sadece manto sıcaklık ve basınç koşullarında oluşabildiğine bağlı plastik deformasyon, kısmi ergime ve rekristalizasyon yapı ve dokularını gösterirler (Özkan, 1982).

Kümülatlar tektonitleri çevreler konumda olup Baltaşı (Nacaran) köyü civarında ve inceleme alanının batısında yer almaktadır (Şekil 1.1). Tektonitlerin üzerinde dünnitlerle başlayıp harzburjit, gabrolara kadar uzanan ve kristal çökelimi süreciyle oluşturulanları belgeleyen tipik yapı ve dokular sunan kümulatlar grubu kayaçlar, 2800 m kalınlığında bir magmatik seri olup kristal yerleşme proseslerine katkıda bulunan yapı ve dokular gösterirler (Özkan, 1983a).

Bazık volkanik kayaçlar ise inceleme alanında Caferi köyü yakınlarında yüzeylemektedir (Şekil 1.1).
Şekil 2.9. Guleman Ofiyolitinin genelleştirilmiş bölgesel kesiti (Bingöl 1986’ dan değiştirilerek).

Şekil 2.11. Kümülatlara ait tabakalı gabrolar. Baltaşi köyünün yaklaşık 2 km güneyi.

Şekil 2.13. Guleman ofiyolitine ait tekil diyabaz daykları.
2.2.4. Yaş

2.3. Hazar Karmaşı (Üst Maastrihtiyen – Orta Eosen)

İlk kez Rigo de Righi ve Cortesini (1964) tarafından ‘Hazar Birimi’ olarak adlandırılan bu birim Hazar Gölü’nün kuzeyi ve doğusunda yüzeylemiş ve adını da buradan almıştır.

Hazar Karmaşı inceleme alanında, Bahru köyü civarında yer almakta olup çalışma alanının güneybatısında yüzeylemektedir (Şekil 2.1).

olarak isimlendirilen bu birimi Sarkanmış Formasyonu olarak isimlendirerek Hazar Karmasığini Sarkanmış, Simaki, Gehroz olmak üzere üç alt formasyona ayırmıştır.

Hazar Grubu’nun çökelme ortamı üzerinde çalışma yapan Aktaş ve Robertson (1984), ortamın başlangıça karasal olduğunu ve birimin tabanında bulunan Ceffan Formasyonunun bu karasal ortamı temsil ettiği; Ceffan Biriminin Simaki birimi ile yanal geçişini; en üstteki Gehroz Formasyonu’nun ise denizel şartlarda geliştiğini; en üstteki Gehroz Formasyonu’nun ise denizel ortamında çökelmiş pelajik kireçtaşlar olduklarını ifade etmiştir.

Birimin yaş, daha önceki araştırmacılar tarafından içerisindeki fosillerden tespit edilerek Üst Meastrihtiyen – Orta Eosen yaş verilmiştir.

2.4. Maden Karmasıği (Orta Eosen)

Maden Karmasıği inceleme alanında, Sarkanmış köyünün batısında Şeyhkatil ile Alkatyan köyleri çevresinde ve çalışma alanının doğusunda Ortakündikan köyü çevresinde yüzeylemektedir (Şekil 2.1).

Çelik (2003), birimin oldukça karmaşık bir litolojiye sahip olduğunu belirtmiş, kırmızımsı kahverengi çamurtaşları, moloz akması seviyeleri, yanal ve düsey yönde takip edilmişse mümkün olmayan kanal dolguları ve bunlarla birlikte düzensiz bir şekilde anlaşacak şekilde görülen köreç taşı olistolitlerinden oluşan Melefan Formasyonu ve aglomera, volkanik kumtaşı, kırmızımsı çamurtaş, bazaltik – andezitik yastık lavlardan oluşan Karadere Formasyonu olmak üzere başlıca iki farklı formasyona ayrışmıştır.

Maden Karmasıği’nin oluşum ortamı hakkında, birim üzerinde araştırmı yapan pek çok araştırmacı birbirinden farklı yorumlar yapmışlardır. Rigo de Righi ve Cortesini (1964), Maden Grubu’nun Hazar Grubu üzerine uyumlu olarak geldiğini ve Hazar Grubu’nun ardık lackır tipi

Güneydoğu Anadolu Bindirme Kuşağı boyunca birim; Lice Formasyonu üzerinde tektonik dokanakla durmaktadır.

2.5. Lice Formasyonu (Alt Miyosen)

3. TEKTONİZMA

Bütün özellikleriyile Alpin tip ofiyolitlere benzerlik gösteren Guleman Grubu, Türkiye’deki 3 ofiyolit kuşağından güney kuşak içerisinde yer almaktadır. Ofiyolitlerin yerleşmesinde etkili olan tektonizma, Guleman Grubu üzerinde de etkili olmuştur. Guleman Ofiyolitin faylanarak kırılanması ve yine bu kayaçlarda izlenen kırık ve fayların hepsi ofiyolitin yerleşmesi esnasında ve sonrasında kabuk hareketleriyle oluşmuştur (Özkan, 1982).

Bu böümlerden Gölalan ve Pütyan kesimlerinin genel uzanımının KB-GD olması karşısında, krom yataklarının genel uzanımları KD-GB yönü olduğu belirtmiştir.

Rut-Lasir kesiminde çok belirgin K-G doğrultulu ve 35-40° ile batıya eğimli bir iç yapı düzeni geliştirilmiştir.Harzburjitter iç çatı olivince ve piroksence zengin kısımların ardalanmasından ve kromit toplanımlarının oluşan bantlanmalar ile sıcaklık haldeki kromit tanelerinin
uzamılarından saptanan yapraklanmalar, yörede izlene başlıca yapısal elemanlardır (Engin ve diğ., 1982).

Rut- Lasir bölgesi oldukça yoğun bir tektonizma geçirmiştir. Bölgede kromit cevherleşmeleri K-G doğrultulu ve 30-35° ile batıya eğimlidir. Sahada gözlenen fayların büyük çoğunluğu uzunluk olarak 300 m’nin altındaştır. Faylarla ölçülmüş atm uzaklıklarında hemen her yerde 50 m’den daha az olmak üzere genelde 1-10 m arasındaki (Örün, 2002).

Kapin ve Şabata Bölgelere, kapin ve şabata bölgelerini, her ikisinde de KB-GD doğrultulu, yaklaşık 60° GB’ya eğimli krom kütlelerinin varlığına rağmen, iki bölgedeki bantlanma ve yapraklanma ve doğrultuları zittir. İki bölge arasında KD-GB doğrultulu bir fay bulunmaktadırdı (Aslantaş, 2001).

4. PETROGRAFİ

4.1. Tektonitler

Tektonitler inceleme alanında dünit ve harzburjit litolojisinde izlenmektedir. Bu kayaçlar daha çok krom cevherleşmesinin yer aldığı Sori bölgesinde yaygın olarak görülmekte ve arazide yeşilimsi sarı renkte, bol kırıkli, çatısal bir görünümdedirler.

4.1.1. Dünit

Dünitler içerisinde % 3-4 oranında öz şekilsiz iri kristaller halinde ortopiroksenler de görülmektedir. Bu mineraller tek yönde dilinimlere sahip olup bu dilinim izlerine göre de paralel sönme gösterirler.
Şekil 4.1. İri kristalli öz şekilsiz olivinlerin mikroskopta görünümü. Ol: Olivin. Ç.N. X 32.

Şekil 4.2. Parçalanmış olivinlerin mikroskopta görünümü. Ç.N. X 32.

4.1.2. Harzburjit

Harzburjitler, inceleme alanında yeşilimsi sari renkte görülürken alterasyondan etkilenen serpantinleşmiş harzburjitler yeşilimsi renk ve yağlı bir parlaklık gösterirler.

Harzburjitler, tektonitler içerisinde bulunan en yaygın kayaç grubudur ve tektonitlerin yaklaşık %60-70 oluşturumaktadır. Esas olarak olivin ve ortopiroksen minerallerinden meydana gelen bu kayaçlar daha az oranlarda klinopiroksen, opak mineraller ve ikincil minerallerden oluşur. Alınan kaya örneklerinden yapılan ince kesitler mikroskopta incelenmesi sonucu % 50-60 olivin, % 30-40 ortopiroksen, % 3-5 klinopiroksen ve % 1-2 kromitten oluştuğu belirlenmiştir (Şekil 4.5).

Şekil 4.5 Tektonitlere ait harzburjitlerin mikroskopta görünümü. Ol: Olivin, Opx: Ortopiroksen. Ç.N.X32.

4.2. KÜMÜLATLAR

Guleman ofiyolitine ait kümülatlarda genellikle adkümülat ve mezokümülat dokular görülmektedir. Adkümülat dokuda interkümülüs faz % 0-7 iken, mezokümülat dokuda bu oranı % 7-25’e kadar çıkmaktadır. Adkümülat ve mezokümülat dokular, yüksek sıcaklıklarda ve bileşim değişikliğinin fazla olmadığı magma odasındaki kristalleşme ile oluşur (Juteau, 1975, Beyarslan, 1996’dan).

İnceleme alanında kümülat grubu kayaçlar başkaca; dünit, verlit, klinopiroksenit, olivinli gabro, klinopiroksenli gabro tüm bu birimleri kesen tekil diyabaz daykları, levha dayık karmaşığının bazik volkanik kayaçlardan oluşur.

4.2.1. Dünit

Kromit kristalleri yaklaşık % 5-25 arasında bulunmaktadırdır ve genellikle yari öz şekilli olurlar (Şekil 4.7, Şekil 4.8).

4.2.2. Verlit

İnceleme alanında olivinli - klinopirokesten gabrolarla yakın olarak bulunan verlit grubu kayaçlar, esas olarak klinopirokesten ve olivinden oluşurlar (Şekil 4.9). Makro örneklerinde yeşilimsi kahverengi renk tonlarında olup, olivin içermeleri ile piroksenitlerden ayrılırlar. Araçta balta köyünün yaklaşık 12 km güneyinde izlenmektedirler.

Olivinler kayacın yaklaşık % 65-70’ini oluşturup genellikle özekkillsiz kristaller halinde, kırıklı ve çatlaklı bir yapıda görülür. Olivinler genellikle kenarları ve çatlakları boyunca serpantinlesmişlerdir.

Verlitrlerde kümülüs fazı oluşturan olivin ve klinopirokesten kristalleri orta ve iri taneli olup adkümülat doku göstermektedir (Şekil 4.10). Ancak üst seviyelere doğru plajiyoklasların interkümülüs faz olarak meydana çıkması ile mezokümülat dokuda gözlenemektedir.

Verlitik intrüzyonlarda, üst seviyelere doğru plajiyoklaslarının çıkması intrüzyonda bir fraksiyonel kristalleşme olduğunu göstermektedir (Beyarslan, 1996).

4.2.3. Klinopirokestenit

Klinopirokestenitler, yaklaşık olarak % 90’un üzerinde klinopirokesten, % 3-5 olivin, % 3-5 ortopirokesten ve opak mineallerden oluşur (Şekil 4.11). Klinopirokestenitler gabro seviyeleri içinde küçük intrüzyonlar şeklinde bulunurlar. Alterasyondan etkilenmiş makro örneklerinde yeşilimsi, parlak ve yaşıştı bir görünümü vardır.

Olivinler genellikle özekkillsiz kristaller halinde bol kırıklı ve çatlaklı bir görünüm sunarlar.

Klinopirokestenler yari özekkilli ve özekkillsiz kristaller halinde bulunup, sönme açısı yaklaşık olarak 38-40° arasında ölçülmüş ve ojit olabileceği tespit edilmiştir.

4.2.4. Gabro

Kümülat grubu kayaçlar içerisinde kalın bir tabakalanma gösteren gabrolar, esas olarak plajiyoklas ve klinopiroksen daha az oranlarda ortopiroksen, olivin ve tali minerallerden oluşmuş kayaçlardır (Şekil 4.13). Gabroik kayaçlar içermiş oldukları minerallere göre isimlendirilmekte olup inceleme alanındaki gabroları; plajiyoklas, olivin, klinopiroksen, ortopiroksenden oluşan olivinli gabrolar ile plajiyoklas ve klinopiroksenden oluşan klinopiroksenli gabrolar oluşturmaktadır.

4.2.4.1. Olivinli Gabro

Olivinli gabrolar yaklaşık olarak % 50-60 plajiyoklas, % 40-50 klinopiroksen ve % 10'dan az olivinden oluşurlar (Şekil 4.14).

Olivinli gabrolarda genellikle adkümülat ve mezokümülat dokular gözlenmektedir. Plajiyoklas, kümülüs fazı oluşturmağın klinopiroksen ve olivin bazı kesitlerde kümülüs bazı kesitlerde de interkümülüs fazı oluşturmaktadır. Adkümülat dokuda interkümülüs faz % 7’ den az iken, mezokümülat dokuda bu oran % 25’e kadar çıkmaktadır ve plajiyoklaslarda çok belirir bir zonlanma görülebilmektedir (Şekil 4.14).

Kloritler tek nikolde yeşilimsi renkte pleokraizma gösterirken, çift nikolde grimsi-mavi renk tonlarında izlenir.

36

4.2.4.2. Klinopiroksenli Gabro

İnceleme alanında Baltaşı köyünün güney kısımlarında görülen diğer bir çeşit gabro klinopiroksenli gabrolardır. Arazide olivinli gabrolarla aralarındaki ilişki net olarak izlenmemektedir.

Araziden alınan makro örneklerinde genellikle gri ve siyahmsı renklerde olup, ince ve orta taneli kayaçlardır. Bu gabrolar, eş boy taneli ortalama % 40-50 klinopiroksen, % 50-60 plajiyoklasdan oluşmuş kayaçlardır (Şekil 4.15).

Kümülüs fazı oluşturan plajiyoklaslar öz ve yarı özekilli kristaller halinde olup albit ve karlsbat ikiizlenmeleri karakteristiktir. Sönme açıları 35\(^\circ\) ölçülü bu plajiyoklasların labrador olabileceği tespit edilmiştir. An içerikleri yaklaşık % 12-15 olup normal zonlanma gösterirler. Plajiyoklaslarda alterasyon sonucu karbonatlaşma ve serizitleşmeler görülmektedir (Şekil 4.16).

Klinopiroksenler, yarı özekilli ve öz şekilsiz kristaller halinde olup, 40-42\(^\circ\) sönme açısı sahip ojit olabileceği tespit edilmiştir. Piroksenler, kısmen altere olmuş kısmen de klorit ve uralite dönüşmüşlerdir. Piroksenler kümülüs fazı oluşturmakla beraber bazı yerlerde çok az oranlarda interkümülüs olarak da görülmektedir.

Klinopiroksenli gabrolarda; klinopiroksen ve plajiyoklasın kümülüs fazı oluşturduğu adkümülat doku görülmekte beraber bazı kesitlerde de klinopiroksenlerin interkümülüs fazı oluşturduğu mezokümülat doku görülmektedir (Şekil 4.15, Şekil 4.16).

4.2.5. Diyabaz

İncelleme alanında diyabazlar; tekil diyabaz daykları ve levia dayk karmaşığı şeklinde bulunmaktadır. Tekil diyabaz daykları Baltaşı köy çevresinde gabo ve olivinli gabolardan keser konumda bulunmaktadır. Levia dayk karmaşığına ait olabilecek diyabazlar ise Caferi köyü yakınılarında Sarıçam köy çevresinde yüzeylemektedir.

Tekil diyabaz daykları açık gri renk tonlarında olup, kristal boyutları ince taneliden iri tanelere kadar varyasyonu da göstermektedir. Tekil diyabaz daykları; % 60-70 plajiyoklas, % 20-30 klinopiroksen ve % 10 civarında da amfibol ve klorit, epidot gibi ikincil minerallerden oluşmuştur (Şekil 4.17, Şekil 4.18).

Plajiyoklaslar, öz ve yarı öz şekilli kristaller halinde, sönme açısı 34° olarak ölçülüp plajiyoklaslar labrador olabileceğini tespit etmiştir. İkizlenme karakteristik olup albit karlsbat ikizlenmesi görülmektedir. Daykların iç kısımlarından alınan örneklerde plajiyoklasların iyı korunmuş, ancak kenar kısımlarından alınan örneklerde plajiyoklasların alterasyonuya killeşme ve serizitleşme görülmektedir.

Kayacın yaklaşık % 60-70’i oluşturan plajiyoklaslar öz ve yarıözsekilli kristaller halinde bulunmaktadır. Albit ve karlsbat ikizi gösteren plajiyoklaslarda bazen zonlanmalar görülmektedir. Sönme açısı 35° ölçülen bu plajiyoklasların labrador olabileceği tespit edilmiştir.

Klinopiroksenler özsekilli küçük taneler halinde bulunup sönme açısı 28° ölçülen bu klinopiroksenlerin ojit olabileceği tespit edilmiştir. Kayacın içerisinde % 5-10 gibi çok az bir
oranda kalıntı piroksenlerin bulunmasının yanında piroksenlerin büyük bir çoğunluğu uralite veya klorite dönüşmüştür.

Levha dayak karmaşında tekil diyabazlar da olduğu gibi intergranüler doku gözlenmektedir (Şekil 4.20).

Şekil 4.17. Tekil diyabazların tek nikol mikroskobik görünümü. T.N.X32.

4.2.6. Bazalt

Klinopiroksen gri girişim renklerinde olup ojit olarak tespit edilmştir. Klinopiroksenler ve olivin kristalleri özşekilsiz ve yarı özşekilli olarak bulunur.

Plajiyoklasların çatıkları boyunca boşluklara ve piroksenlerin dilinim izlerine göre klorit, epidot, kalsit, kuvars gibi ikincil minerallerle doldurulmuştur.

Bazaltlarda plajiyoklas mineralleri arazini kalsit, epidot ve klorit gibi ikincil minerallerle doldurduğu intersertal doku (Şekil 4.21) ile hamur malzeme içinde iri fenokristallerin bulunduğu mikroporfirik doku (Şekil 4.22) gözlenmektedir.

Bazaltlarda alterasyon sonucu gelişmiş kalsit, kuvars, epidot, klorit gibi ikincil mineraller (Şekil 4.23) ayrıca kloritleşmeleri görülmektedir (Şekil 4.24).

4.2.7. Serpantinit

Serpantinitler, ofiyolitik birimin tabanını oluşturan peridotitik kayaçların hidrotermal ve yüzeysel koşullar altında geçirmiş oldukları alterasyon sonucu oluşmuşlardır. Arazide kırık, çatıktı bir yapıda koyu yeşil renktonlarında ve yağışın bir parlaklıkta görülmektedir.

\[2\text{Mg}_2\text{Si}_4 + 3\text{H}_2\text{O} = \text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 + \text{Mg(OH)}_2 \]
olivin serpantin bruisit

\[6\text{MgSiO}_4 + 3\text{H}_2\text{O} = \text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 + \text{Mg}_3\text{Si}_4\text{O}_{10}(\text{OH})_2 \]
enstatit serpantin talk

\[\text{Mg}_2\text{Si}_3\text{O}_3 + \text{MgSiO}_3 + 2\text{H}_2\text{O} = \text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 \]
olivin enstatit serpantin

\[3\text{MgSiO}_3 + \text{H}_2\text{O} = \text{Mg}_3\text{Si}_2\text{O}_5(\text{OH})_4 + \text{SiO}_2 \]
enstatit serpantin

Şekil 4.27. Olivinlerin alterasyon sonucu lizardit ve krizotil serpantin minerallerine dönüşmesi. Ç.N.X32.

Şekil 4.28. Serpantinitlerde görülen ağlı (mesh) dokunun mikroskopta görünümü.
Şekil 4.29. Serpantinleşme sırasında açığa çıkan demiroksit ve opak minerallerin mikroskopta görünümü. Ç.N.X32.
5. JEOKİMYA

5.1. Analiz Yöntemleri

5.2. Magmatik Kayaçların Adlandırılması

Magmatik kayaçların adlandırılmaları için Le Maitre (1989)’un K₂O-SiO₂ diyagramı (Şekil 5.1) ve Winchester ve Floyd (1977)’ün SiO₂-Zr/TiO₂ diyagramı (Şekil 5.2) ve Zr/TiO₂-Nb/Y (Şekil 5.3) diyagramı kullanılmıştır.

Tablo 5.1: Guleman Ofiyolitine ait kayaçlar

<table>
<thead>
<tr>
<th>Ornek</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>43,98</td>
<td>42,05</td>
<td>44,56</td>
<td>44,04</td>
<td>44,73</td>
<td>42,83</td>
<td>44,65</td>
<td>39,62</td>
<td>44,44</td>
<td>44,63</td>
<td>50,2</td>
<td>47,85</td>
<td>49,51</td>
<td>48,38</td>
<td>50,06</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,62</td>
<td>0,63</td>
<td>1,02</td>
<td>0,36</td>
<td>0,63</td>
<td>0,58</td>
<td>0,47</td>
<td>0,46</td>
<td>0,62</td>
<td>0,37</td>
<td>2,35</td>
<td>4,58</td>
<td>6,33</td>
<td>9,12</td>
<td>5,55</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>9,24</td>
<td>9,27</td>
<td>9,35</td>
<td>9,21</td>
<td>9,18</td>
<td>10,27</td>
<td>9,1</td>
<td>8,63</td>
<td>10,1</td>
<td>8,92</td>
<td>5,44</td>
<td>7,44</td>
<td>5,04</td>
<td>8,58</td>
<td>5,76</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>42,28</td>
<td>41,31</td>
<td>41,45</td>
<td>42,85</td>
<td>42,69</td>
<td>42,83</td>
<td>43,07</td>
<td>43,4</td>
<td>42,78</td>
<td>44,17</td>
<td>20,93</td>
<td>20,15</td>
<td>17,46</td>
<td>15,87</td>
<td>17,44</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0,69</td>
<td>0,53</td>
<td>1,3</td>
<td>0,95</td>
<td>0,82</td>
<td>0,47</td>
<td>0,5</td>
<td>1,01</td>
<td>0,59</td>
<td>0,52</td>
<td>17,85</td>
<td>15,78</td>
<td>18,28</td>
<td>16,18</td>
<td>18,06</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0,16</td>
<td>0,06</td>
<td>0,04</td>
<td>0,02</td>
<td>0,07</td>
<td>0,09</td>
<td>0,02</td>
<td>0,02</td>
<td>0,02</td>
<td>0,01</td>
<td>0,15</td>
<td>0,17</td>
<td>0,33</td>
<td>0,41</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,07</td>
<td>0,16</td>
<td>0,14</td>
<td>0,19</td>
<td>0,14</td>
<td>0,07</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,07</td>
<td>0,16</td>
<td>0,14</td>
<td>0,19</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td><0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>0,01</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,12</td>
<td>0,11</td>
<td>0,11</td>
<td>0,12</td>
<td>0,1</td>
<td>0,15</td>
<td>0,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>0,15</td>
<td>0,17</td>
<td>0,33</td>
<td>0,41</td>
<td>0,24</td>
<td>0,15</td>
<td>0,17</td>
<td>0,33</td>
<td>0,41</td>
<td>0,24</td>
<td>0,15</td>
<td>0,17</td>
<td>0,33</td>
<td>0,41</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>0,07</td>
<td>0,03</td>
<td>0,04</td>
<td>0,03</td>
<td>0,04</td>
<td>0,07</td>
<td>0,03</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,07</td>
<td>0,03</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>0,03</td>
<td>0,01</td>
<td><0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0,03</td>
<td>0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td></td>
</tr>
<tr>
<td>Toplam</td>
<td>99,9</td>
<td>99,89</td>
<td>99,89</td>
<td>99,91</td>
<td>100,1</td>
<td>99,9</td>
<td>99,91</td>
<td>99,91</td>
<td>100</td>
<td>99,92</td>
<td>100,1</td>
<td>100,1</td>
<td>100,1</td>
<td>100,1</td>
<td>100,1</td>
<td></td>
</tr>
</tbody>
</table>

İçerikleri

[İçeriklerin detayları]
<table>
<thead>
<tr>
<th>Elemt</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>2.1</th>
<th>4.2</th>
<th>5.2</th>
<th>5.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>45,04</td>
<td>46,82</td>
<td>47,15</td>
<td>45,46</td>
<td>47,49</td>
<td>52,22</td>
<td>50,15</td>
<td>49,58</td>
<td>49,84</td>
<td>50,11</td>
<td>50,75</td>
<td>49,78</td>
<td>48,93</td>
<td>49,59</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10,07</td>
<td>12,41</td>
<td>10,81</td>
<td>6,59</td>
<td>13,27</td>
<td>14,71</td>
<td>15,08</td>
<td>15,48</td>
<td>15,85</td>
<td>14,02</td>
<td>15,08</td>
<td>15,07</td>
<td>15,05</td>
<td>15,49</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6,54</td>
<td>9,04</td>
<td>8,34</td>
<td>8,81</td>
<td>7,16</td>
<td>8,5</td>
<td>8,88</td>
<td>11,78</td>
<td>10,63</td>
<td>11,33</td>
<td>9,73</td>
<td>10,38</td>
<td>10,43</td>
<td>11,47</td>
</tr>
<tr>
<td>MgO</td>
<td>19,94</td>
<td>16,44</td>
<td>16,43</td>
<td>21,16</td>
<td>24,21</td>
<td>8,94</td>
<td>9,21</td>
<td>8,73</td>
<td>7,35</td>
<td>7,5</td>
<td>7,98</td>
<td>8,49</td>
<td>7,11</td>
<td>7,76</td>
</tr>
<tr>
<td>CaO</td>
<td>13,3</td>
<td>15,31</td>
<td>14,32</td>
<td>13,24</td>
<td>15,58</td>
<td>8,64</td>
<td>10,87</td>
<td>11,22</td>
<td>10,31</td>
<td>10,8</td>
<td>8,81</td>
<td>11,36</td>
<td>9,94</td>
<td>10,07</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,28</td>
<td>0,59</td>
<td>0,61</td>
<td>0,36</td>
<td>0,62</td>
<td>2,26</td>
<td>2,92</td>
<td>2,47</td>
<td>1,74</td>
<td>1,38</td>
<td>2,5</td>
<td>2,24</td>
<td>3,6</td>
<td>2,17</td>
</tr>
<tr>
<td>K₂O</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td>0,25</td>
<td>0,2</td>
<td>0,04</td>
<td>0,07</td>
<td><0,04</td>
<td>0,26</td>
<td><0,04</td>
<td><0,04</td>
<td>0,06</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,05</td>
<td>0,13</td>
<td>0,15</td>
<td>0,14</td>
<td>0,14</td>
<td>0,35</td>
<td>0,27</td>
<td>0,1</td>
<td>1</td>
<td>1,1</td>
<td>0,89</td>
<td>0,99</td>
<td>1,11</td>
<td>1,08</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0,04</td>
<td>0,03</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>MnO</td>
<td>0,11</td>
<td>0,12</td>
<td>0,14</td>
<td>0,12</td>
<td>0,12</td>
<td>0,14</td>
<td>0,16</td>
<td>0,15</td>
<td>0,18</td>
<td>0,18</td>
<td>0,16</td>
<td>0,16</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Cr₂O₅</td>
<td>0,23</td>
<td>0,23</td>
<td>0,11</td>
<td>0,24</td>
<td>0,11</td>
<td>0,24</td>
<td>0,03</td>
<td>0,04</td>
<td>0,03</td>
<td>0,17</td>
<td>0,3</td>
<td>0,3</td>
<td>0,03</td>
<td>0,017</td>
</tr>
<tr>
<td>LOI</td>
<td>4,4</td>
<td>7,9</td>
<td>3,9</td>
<td>1,3</td>
<td>1,3</td>
<td>2,5</td>
<td>2,1</td>
<td>0,9</td>
<td>2,4</td>
<td>1,4</td>
<td>2,8</td>
<td>1,5</td>
<td>2,5</td>
<td>3,8</td>
</tr>
<tr>
<td>Top/C</td>
<td>0,03</td>
<td>0,02</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,03</td>
<td>0,13</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
<td>0,03</td>
<td>0,03</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Top/S</td>
<td>0,04</td>
<td>0,03</td>
<td>0,01</td>
<td>0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0,13</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
<td>0,04</td>
<td>0,04</td>
<td>0,01</td>
<td>0,02</td>
</tr>
<tr>
<td>Toplam</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Tablo 5.1. Devam

<table>
<thead>
<tr>
<th>Örnek</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>D4</th>
<th>D5</th>
<th>2.1</th>
<th>4.2</th>
<th>5.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>0,28</td>
<td>0,59</td>
<td>0,61</td>
<td>0,36</td>
<td>0,62</td>
<td>2,26</td>
<td>2,92</td>
<td>2,47</td>
<td>1,74</td>
<td>1,38</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>6,54</td>
<td>9,04</td>
<td>8,34</td>
<td>8,81</td>
<td>7,16</td>
<td>8,5</td>
<td>8,88</td>
<td>11,78</td>
<td>10,63</td>
<td>11,33</td>
</tr>
<tr>
<td>MgO</td>
<td>19,94</td>
<td>16,44</td>
<td>16,43</td>
<td>21,16</td>
<td>24,21</td>
<td>8,94</td>
<td>9,21</td>
<td>8,73</td>
<td>7,35</td>
<td>7,5</td>
</tr>
<tr>
<td>CaO</td>
<td>13,3</td>
<td>15,31</td>
<td>14,32</td>
<td>13,24</td>
<td>15,58</td>
<td>8,64</td>
<td>10,87</td>
<td>11,22</td>
<td>10,31</td>
<td>10,8</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0,28</td>
<td>0,59</td>
<td>0,61</td>
<td>0,36</td>
<td>0,62</td>
<td>2,26</td>
<td>2,92</td>
<td>2,47</td>
<td>1,74</td>
<td>1,38</td>
</tr>
<tr>
<td>K₂O</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td><0,04</td>
<td>0,25</td>
<td>0,2</td>
<td>0,04</td>
<td>0,07</td>
<td><0,04</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0,05</td>
<td>0,13</td>
<td>0,15</td>
<td>0,14</td>
<td>0,14</td>
<td>0,35</td>
<td>0,27</td>
<td>0,1</td>
<td>1</td>
<td>1,1</td>
</tr>
<tr>
<td>P₂O₅</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0,04</td>
<td>0,03</td>
<td>0,09</td>
<td>0,09</td>
<td>0,09</td>
</tr>
<tr>
<td>MnO</td>
<td>0,11</td>
<td>0,12</td>
<td>0,14</td>
<td>0,12</td>
<td>0,12</td>
<td>0,14</td>
<td>0,16</td>
<td>0,15</td>
<td>0,18</td>
<td>0,18</td>
</tr>
<tr>
<td>Cr₂O₅</td>
<td>0,23</td>
<td>0,23</td>
<td>0,11</td>
<td>0,24</td>
<td>0,11</td>
<td>0,24</td>
<td>0,03</td>
<td>0,04</td>
<td>0,03</td>
<td>0,17</td>
</tr>
<tr>
<td>LOI</td>
<td>4,4</td>
<td>7,9</td>
<td>3,9</td>
<td>1,3</td>
<td>1,3</td>
<td>2,5</td>
<td>2,1</td>
<td>0,9</td>
<td>2,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Top/C</td>
<td>0,03</td>
<td>0,02</td>
<td>0,04</td>
<td>0,04</td>
<td>0,04</td>
<td>0,03</td>
<td>0,13</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Top/S</td>
<td>0,04</td>
<td>0,03</td>
<td>0,01</td>
<td>0,01</td>
<td><0,01</td>
<td><0,01</td>
<td>0,13</td>
<td>0,02</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Toplam</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Üye: 1942
Şekil 5.1. Guleman Ofiyolitine ait örneklerin K₂O diyagramındaki dağılımları (Le Maitre, 1989).

Şekil 5.2. Guleman Ofiyolitine ait örneklerin SiO₂-Zr/ TiO₂ diyagramındaki dağılımları (Winchester ve Floyd, 1977).

5.3. Guleman Ofiyolitine Ait Kayaçların Jeokimyasal Özellikleri

Ofiyolitlerde MgO değeri; dünitlerde % 42.78-44.17, harzburjiterde % 41.31-42.85, piroksenitlerde % 15.87-20.93, gabrolarda % 14.21-21.36, diyabazlarda % 7.35-9.21 ve bazaltlarda % 7.11-8.49 arasında değişmektedir.
Guleman Ofiyolitlerine ait SiO2-MgO değişim diyagramında (Şekil 5.4) MgO peridotitik kayaçlardan bazaltik kayaçlara doğru belirgin olarak azalmaktadır ve bu iki oksit arasında negatif bir korelasyon görülmektedir. Peridotitik kayaçlardan bazaltlara doğru MgO deki bu negatif ilişki kristallenme sırasında mineral farklılaşması ile açıklanabilir. Peridotitlerdeki olivin ve piroksen minerallerinin bağlı olarak azalması ile MgO içerikleri de azalmaktadır.

Al2O3-MgO değişim diyagramında (Şekil 5.4) SiO2'ye benzer bir durum görülmektedir ve bu iki oksit arasında da negatif bir ilişki vardır. Gabro, piroksenit, diyabaz ve bazaltlardaki Al2O3 değerinin artış olivin ve piroksen gibi alüminyum içermeyen minerallerin yerine feldspatların varlığı ile ilişkilidir.

FeO (toplam demir)-MgO diyagramında (Şekil 5.4) peridotitlerden bazaltlara doğru küçük bir artma olsa da bu iki oksit arasında belirgin bir değişim izlenmemektedir. Özellikle diyabaz ve bazaltlarda TiO2 içeriği % 1,11'e kadar çıkmaktadır. Ancak piroksenit ve gabrolarda CaO içeriği en yüksek değere çkılmaktadır (Tablo 5.1). Bu kayaçlarda bulunan plajiyoklas mineralleri anorttiçe zengin olup CaO bastante kaynaktır.

Na2O içeriği peridotitlerde çok düşük değerlerde izlenmektedir. Bu değer fraksiyonlaşma ile artmaktadır. Ancak piroksenit ve gabrolarda CaO içeriği en yüksek değerlerere çıkmaktadır (Şekil 5.4, Tablo 5.1). Bu kayaçlarda bulunan plajiyoklas mineralleri anorttiçe zengin olup CaO bastante kaynaktır.

Na2O içeriği peridotitik ve komatitik kayaçlarda çok düşük değerlerde iken diyabaz ve bazaltlarda 3,69'a kadar çıkmaktadır (Tablo 5.1). Na2O-MgO değişim diyagramında bu iki oksit arasında negatif bir ilişki görülmektedir (Şekil 5.4). Diyabaz ve bazaltlardaki Na2O artışı plajiyoklasların alбитçe zenginleşmesi ile açıklanabilir. Ayrıca bu kayaçlarda görülen alterasyonlar da Na’ca zenginleşmede etken olabilir.

K2O miktarı peridotitik kayaçlarda ve gabroik kayaçlarda dedeksiyon limitinin altında (<0,04) görülürken bazalt ve diyabazlarda bu değer % 0,26'ya kadar çıkmaktadır.
Şekil 5.4. Guleman Ofiyolitine ait diyabaz ve bazaltlara ait ana oksitlerin MgO'ya göre değişim diyagramları.
Şekil 5.4’ün devam. Guleman Ofiyolitine ait diyabaz ve bazaltlara ait ana oksitlerin MgO’ya göre değişim diyagramları.
5.4. Magmatik Kayaçların Tektonik Ortamları

Magmatik kayaçlar kimyasal bileşimlerine göre toleyitik, kalkalkali, alkali ve şoñonitik farklı serilere ayrılır. Guleman ofiyolitine ait magmatik kayaçların hangi magmatik seriyi ait olduğunu belirlemesini amacı ile Na₂O+K₂O-SiO₂ diyagramı ve AFM (Na₂O+K₂O-FeO-MgO) diyagramları kullanılmıştır (Irvine ve Baragar, 1971). Na₂O+K₂O–SiO₂ diyagramında Guleman Ofiyolitine ait diyabaz ve bazalt örneklerinin tümü subalkalin alanda yer almıştır. Na₂O+K₂O-FeO-MgO ise bu örneklerin büyük bir bölümü toleyitik alanda yer almaktadır (Şekil 5.5, Şekil 5.6).

Bu çalışmada da Guleman Ofiyolitine ait diyabaz ve bazalt örneklerinin iz element değerleri ayırtman diyagramlarında kullanılarak ortamsal yoruma gidilmiştir.

Ti/100-Zr-Sr/2 diyagramında Guleman Ofiyolitine ait örneklerin büyük bir kismi OFB (okyanus tabanı bazaltı) alanında yer alırken üç örnek bu alanın dışında yer almıştır (Şekil 5.7). Jeokimyasal olarak farklılık gösteren bu örneklerden iki tanesi tekil diyabaz dayıklarına aittir.

V-Ti diyagramında (Shervais, 1982) örneklerin büyük bir çoğunluğu MORB (Okyanus ortası sirtı bazaltı) alanında yer alırken tekil diyabazalara ait iki örnek bu alanın dışında yer almıştır (Şekil 5.8).

Zr/Y-Zr diyagramında (Pearce ve Norry, 1979) Guleman Ofiyolitine ait örneklerin tamamı C bölgesinde (Okyanus ortası sirtı bazaltı) yer almaktadır (Şekil 5.9).

Nb-Zr/4-Y diyagramında diyabaz ve bazalt örneklerinin tamamı D (N-MORB) bölgesinde yer almıştır (Şekil 5.10).

Ti-Zr diyagramında (Pearce ve Cann, 1973) çalışma alanındaki örnekler OFB (Okyanus tabanı bazaltı) ve LKT (Düşük potasyumlu toleyit) alanında yer almaktadır.
Şekil 5.5. Guleman Ofiyolitine ait diyabaz ve bazaltlar için Na₂O+K₂O – SiO₂ değişim diyagramı (Irvine ve Baragar, 1971).

Şekil 5.6. Guleman Ofiyolitine ait diyabaz ve bazaltlar için FeO - Na₂O+K₂O- MgO değişim diyagramı (Irvine ve Baragar, 1971).
Şekil 5.7 Guleman Ofiyolitine ait örneklerin Ti/100-Zr/2 diyagramındaki dağılımları (Pearce ve Cann, 1975).

Şekil 5.8 Guleman Ofiyolitine ait örneklerin V-Ti diyagramındaki dağılımları (Shervais, 1982) (IAT: Adayayı toleyitleri, MORB: Okyanus ortası sırtı bazaltları).
Şekil 5.9. Guleman Ofiyolitine ait örneklerin Zr/Y-Zr diyagramında dağılımları (Pearce ve Norry, 1979)

Şekil 5.10 Guleman Ofiyolitine ait örneklerin Nb-Zr/4-Y diyagramında dağılımları (Meschede, 1986).
Guleman ofiyolitlerinin oluştukları jeotektonik ortamı belirlemek amacı ile analizi yapılan kayaç örneklerine ait nadir toprak element (NTE) içerikleri kondridit değerlere (Baynton, 1984; Rollinson, 1993'den) normalleştirilerek her kayaç grubu ayrı ayrı değerlendirilmiştir.

Harzburjit ve dünitlerde nadir toprak element içerikleri genellikle dedeksiyon limitinin altında (Tablo 5.1). Dedeksiyon limitinin altındaki bu kayaçların normalleştirilmelerinde analizlerdeki dedeksiyon limitleri esas alınarak normalleştirilme yapılmıştır. Kondridite normalleştirilmiş bu değerlere göre her kayaç grubu için spider diyagramları hazırlanmıştır (Şekil 5.12).
Şekil 5.12. Guleman Ofiyolitne ait örneklerin NTE spider diyagramı.
Şekil 5.12’nin devamı. Guleman Ofiyolitne ait örneklerin NTE spider diyagramı.
5.5. İnceleme Alanı ve Yakın Çevresinin Jeotektonik Evrimi

Saccani ve Photiades (2004), Pindos (Yunanistan) ofiyolitin iki alt birimine ayrıldığını, alttaki ofiyolit biriminin MOR karakterli olduğunu, üstteki ofiyolit biriminin manto ultramafitlerinden oluştuğunu ve her iki biriminde boninitik dayklar tarafından kesildiğini belirtmektedir.

Beyarslan ve Bingöl (2000), Kömürhan ofiyolitinin Üst Kretase’de dalan levha üzerindeki okyanusal kabuk üzerinde geliştiğini ve Üst Kretase yaşlı yay magmatitleri
tarafından (Elazığ Magmatitleri) kesildiğini belirtmektedir. Araştırmacılar ofiyolinin jeokimyasal karakterinin SSZ tipi ofiyolitlere banzediklerini açıklamaktadırlar.

Bu çalışmada elde edilen saha, petrografi ve petrolojik bulgular Guleman Ofiyolitinjeokimyasal karakterinin SSZ tipi ofiyolitlere banzediklerini açıklamaktadır.

Önceki çalışmalar ve bu çalışmada elde edilen bulgular değerlendirildiğinde bölgenin jeodinamik evrimi şu şekilde açıklanabilir;

Triyas’ta eski Yugoslavya’dan Arnavutluk, Yunanistan, Türkiye ve İran’a kadar uzanan bir kuşakta Avrasya Levhası ile Arap Levhası arasında bir riftle başlamıştır.

Bu açılmaya bağlı olarak Jura-Alt Kretase’de Guleman ofiyolitinin de oluştuğu okyanus ortası sırtı (MORB) ofiyolitleri meydana gelmiştir (Şekil 5.13.a).

Üst Kretase’de okyanusal kabuğun güneyden kuzeye doğru dalmasıyla yay magmatitleri (Elazığ Magmatitleri) oluşmaya başlamıştır. Aynı zamanda dalan levhanın üzerindeki okyanusal litosferde gerilmeye bağlı olarak ikinci bir okyanusal kabuk gelişmeye başlamıştır (Kömürhan, Göksun, Pozanti Ofiyoliti). SSZ karakterindeki bu ofiyolitler Kömürhan bölgesinde ada yayı magmatitleri tarafından kesilmiştir (Şekil 5.13.b).

Kretase sonunda okyanusun kapanması sonucu ofiyolitler tektonik olarak kitaların üzerine yerleşmişlerdir (Şekil 5.13.c).

Daha önceleri yapılan çalışmalar ve bu çalışmada elde edilen bulgulara göre; bu kuşak üzerinde biri Jura-Alt Kretase, diğer Üst Kretase olmak üzere iki farklı yaşta ofiyolitin geliştiğini ve Guleman Ofiyolitinin Jura-Alt Kretase’de okyanus ortası sırtında oluştuğunu söyleyebiliriz.

Ancak, bu kuşak üzerindeki ofiyolitlerde daha detaylı jeokimyasal ve radyometrik çalışmaların yapılması gerektiği düşünülmektedir.
6. KROM CEVHERLEŞMESİ

Bölgede başlangıçta mostra madenciliği ve açık işletme yöntemleriyle nispeten kolaylıkla yapılan madencilik çalışmalarını bu yöntemlerle alımabilecek cevherin azalması sonucu, 1950 yılında yer altı madenciliği başlamış ve bugün yörede kapalı işletme ve açık işletme yöntemleri ile devam edilmektedir.

Guleman krom yataklarının özellikleri ile peridotit biriminin sorgulduğu yöresel litoloji ve yapısı özellikleri göz öne alınarak bu krom zuhurları Gölalan, Ayıpınarı, Rut-Lasir, Kef, Kapın-Şabata olmak üzere 5 ayrı bölgeye ayrılmıştır (Şekil 6.1).
Bu çalışmada Ayıpınar, Kapin, Şabata, Doğu Kef ve Batı Kef olmak üzere 5 ayrı krom cevherleşmesi ve yan kayaçlarından sistematik örnekler alınarak cevherin minerolojisi ve dokusal özelliklerini belirlemeye çalışılmıştır. Guleman bölgesi krom cevherleşmesi çoğunlukla masif cevher içermekle beraber daha az oranlarda saçılımlı, bantlı, merceksi ve nodüler dokular izlenmektedir.

6.1. Saha Özellikleri

6.1.1. Ayıpınar Bölgesi Krom Cevherleşmesi

Şekil 6.2. Ayıpınar bölgesindeki krom zonların istifsel ve yapısal konumları (Engin ve diğ., 1982).
Ayıpınları bölgesinde krom cevherleri; alttan üstü doğru birbirine uyumlu ve yaklaşık paralel bir dizilime sahip olup, doğrultu ve eğim boyunca devamlılık göstermeleri ile bölgedeki diğer cevherleşmelerin aksine düzenli bir yapı gösterirler.

Tenkella Krom Zonu; Guleman ofiyolit biriminin yapışal konum olarak en alt kromit seviyesini oluşturan bu zon Sori işlemeye başlayan hemen doğu ve GD’sunda yer almaktadır (Şekil 6.2). Adını Tenkella deresinden alan bu kromit horizontu, derenin doğusunda bulunan Doğu Tenkella zonu ve batısında bulunan Batı Tenkella zonundan oluşmakta olup bu iki zon muhtemel bir fay ile ötenlenmiştir (Özsoy, 2001).

Aydamar Krom Zonu; Uzundamar-I ile Tenkella zonları arasında yer alan (Şekil 6.2) bu kromit horizontu kesintilerle yüzeyden 1810 m izlenebilirken. Bu zon yer yer incelme ve kalınlaşmalar göstermekte beraber ortalama kalınlığı 0,5 m ila 3,5 m arasında değişmektedir. Cevher dalma bölgesinde genellikle 40-50° batı eğimlidir (Özsoy, 2001).

Uzundamar- I Krom Zonu; Aydıncık ile Uzundamar- 2 zonları arasında yer alan (Şekil 6.2) bu kromit horizontu yer yer incelip kalınlaşmakla beraber yüzeyden 1600 m boyunca izlenebilmekte ve cevher kalınlığı ortalama 0,5 m ila 8 m arasında değişmektedir (Özsoy, 2001). Cevher genellikle metalurjik olup yüksek tenörlüdür.

Uzundamar- II Krom Zonu; Uzundamar- I ile Tepebaşı zonları arasında yer alan (Şekil 6.2) bu kromit horizontu kesintilerle beraber yüzeyden 1050 m izlenebilmekte ve cevher kalınlığı 0,5 m ila 7 m arasında değişmektedir (Özsoy, 2001). Genellikle masif cevherleşme gösteren bu zon K-G doğrultulu olup dalını batı eğimlidir. Metalurjik karakterli cevhere sahiptir.

6.1.2. Kapin Krom Cevherleşmesi

Kapin krom yatağı, Kapın Tepe’nin (1268 m) doğusunda Deriken Dere ile Bahru çayının birleştikleri yerde bulunmaktadır (Şekil 6.1, Şekil 6.3). Genellikle harzburjitler içerisinde bulunan krom mostraları birbirlerinden yaklaşık 50 m kadar uzakta üç sıra halinde KB-GD doğrultulu ve ortalama 60° ile GB’ya eğimlidirler (Şekil 6.4) (Aslantaş, 2001).
Krom mercekleri bреşleleşmiş ve ileri derecede serpantinleşmiş harzburjitler içerisinde bulunmaktadır. Krom kütleleri genellikle mercek şekilli (Şekil 6.4), en fazla 15 m uzunluğuna ve 4 m genişliğe sahiptir. Bazı krom mostralarının çevresinde yer yer düüt kılıfı, bazlarında ise bu düütiler parçalanmış olarak izlenmektedirler (Aslantaş, 2001).

Şekil 6.5. Kapın bölgesine ait refrakter nitelikli krom cevherleri.
6.1.3. Şabata Krom Cevherleşmesi

Şabata Krom Yatağı, Kapin krom ocağının GD’sunda Şabata Tepe’nin (1370 m) KB ucundaki yamça bulunmaktadır (Şekil 6.1). Kapin ve Şabata yataklarını Bahru çayı boyunca KD-GD doğrultuda uzanan bir fay ayırmaktadır.

Bölgede krom cehveri genellikle mercek şekilli kutular halinde olup, 70 m uzunluğunda ve 35 m genişliğindeki sekiz kadar krom mercek bulunmaktadır. Bu merceklerden en uzun olanın boyu 30 m, en geniş olan ise 2,5 m kadardır. Mostralar KB-GD uzanıma sahip olup, ortalama 60° ile GB yönüne eğimlidirler. Şabata Krom Yataklarında krom mostraların bulunduğu en düşük yükselti 1101 m, en büyük yükselti ise 1126 m’dır (Aslantaş, 2001).

Şabata Krom Cevherleşmesinde, hakim litoloji harzburjit olup dünit 0,5-1 m kalınılığında bantlar halinde görülmektedir. İnce kromit bantlarının yönü de kromit merceklerinin uzamı ve eğim yönüne uygun olup, KB-GD doğrultulu GB eğim yönündür. Şabata Krom Yatağının Kapin Krom Yatağı'nın GD'sunda bulunmaktadır (Şekil 6.1). Her ne kadar Kapin Krom Yatağının konumu içinde bulunduğu harzburjitin iç yapısı düzenine uyum yorsa da, Şabata Krom merceklerinin konumu ile Kapin krom merceklerinin konumları birbirlerine uymaktadır. Öte yandan Bahru Çayı boyunca uzanan KD-GB doğrultulu fay, bu kesimdeki dünit-harzburjit sınırında 300 m kadar bir atma neden olmuştur. Bu atımdan Şabata yatağının Kapin’in devami olamayacağı konusunda bir bulgu olarak değerlendirilmiştir (Engin ve diğ., 1982).

Çoğunlukla masif ve yer yer de nodüllü tip cehver içeren Şabata Krom Yatağının cehver tamamen alınmış olup bugün bölgede üretim yapılmamaktadır.

6.1.4. Kef Bölgesi Krom Cevherleşmesi

Kef kromitleri, 1754m ve 1486m rakımlı Kef tepelerin güneyamacında bulunmaktadır (Şekil 6.1). Cevherleşme, harzburjit ile dünitin dokanağına yakın kesimde ve dünit içinde yer almaktadır. Kefdağ kromit kütleleri, batıda saçılmış bir kuşak ile başlamakta doğuya doğru giderek 50 m kalınılığa varılmaktedir.

Kef Bölgesi kromit cehverleri farklı özelliklere sahip olması nedeni ile Doğu Kef ve Batı Kef krom cevherleşmeleri şeklinde incelenmektedir. Ana kayak tipi harzburjit, dünit ve çok az lerzolittir. Harzburjitler zayıf (ince) tektontik dokulu düntitler ise yaklaşık 2,5 km kalınılığında ve tektontitler ile kümülatlara arasında geçiş zonunu oluşturmaktadır (Engin, 1985).
6.1.4.1. Batı Kef Krom Cevherleşmesi

Batı Kef Krom Yatağı, Kef Tepe’nin güney yamacında yer almaktadır. Güleman ofiyolitinin alt birimini oluşturan tektonit dokulu harzburjitterin hemen üzerinde, kümülat dokulu düünilterin tabanında bulunmaktadır (Şekil 6.1).

Cevher-yan kayaç ilisi bazı yerlerdeki küçük fallarla iliskili ilke konumları sahip, oblik atımlı sol yönlü ters fayla (KOT fayı) iki büyük tektonik dilime ayrılmıştır (Şekil 6.6, Şekil 6.7). KOT fayı ile eş zamanlı ve aynı kuvvet sistemlerine bağlı olarak oluşmuşlardır. Genel olarak KB-GD doğrultulu, KD eğimli, atımların oldukça değişken olan ters faylar ile belirli bir sistem göstermeyen normal faylar yatağın daha küçük dilimlere ayrılmamasına neden olmuştur (Çakır, 1994).

Cevher-yan kayaç ilişkisi bazı yerlerdeki küçük faaln malar dışında ilkvel konumlarını korumaktadır. D-B doğrultulu olan krom çevheri zon boyunca KD-GB yönü faylarla kesilmişdir. Her iki fay sistemi de çevher zonunda atımlara neden olmakla beraber, KB-GD doğrultulu fay sistemi daha hakim ve etkin olarak belirmektedir. Cevher mostralarının izlenebildiği en düşük yükselti 1448 m, en fazla yükselti 1580 m’dir (Engin ve Sümer, 1987).

Batı Kef Krom Yatağı tektonitler ile kümülatlar arasında ve kümülatların tabanında yer almaktadır. Tabandaki harzburjitler tektonitlere ait olup porfiroklastik doku göstermektedir. Cevherleşmenin üzerine gelen düünilter ise Güleman Ofiyolitinin kümülat birimine aittir ve bu kayaçlarda adkümülat ve mezokümülat dokular görülmektedir. Cevher zonu harzburjitler üzerine kalınığı genellikle 2 cm ile 50 cm arasında değişen düünit bir seviyeden sonra gelir. Bu seviyinin yüzeyde yer yer 10 m’ye varan kümülklar göstermektedir (Engin ve Sümer, 1987).

Batı Kef Krom cevherleşmesi genellikle saçılı surup yer yer tabakalanmalar kamalanmalar ve merceksi yapılar göstermektedir.

Şekil 6.7. Batı Kef bölgesi kromit cevherleşmelerinin görünümü.
Yaklaşık K-G doğrultulu sıkışmaya bağlı olarak Doğu Kef Fayı olmuştur. Yüzeyde yaklaşık 3,5 km boyunca kesikli olarak izlenen fay zonunun genişliği 2 m ile 50 m arasında değişmekle olup ortalama 20 m civardadır (Engin, 1985).

Batı Kef Krom Yatağı homojen bir tür dağılımla sahip olmayıp genel olarak merkezi bölümün alt seviyelerinde yüksek, üst seviyeler ile doğru uçlarda düşük tenörlü bir görünüm sergiler. Yüzey ve galeri jeolojisi ile sondaj verilerinden yararlanılarak kesit yöntemiyle hesaplanan Batı Kef Krom Yatağı görünür rezervi 7,6 milyon ton, ortalama tenör %30,06 Cr₂O₃ olarak daha önceki çalısmalarda tespit edilmiştir (Çakır, 1994).

6.1.4.2. Doğu Kef Krom Cevherleşmesi

Doğu Kef Krom Cevherleşmesi Guleman Peridotit biriminin güneyinde Kef Tepenin (1754m) güney yamaçları ile Deriken Dere arasında yer almaktadır.

Yüzeyde izlenen krom merceklerinde saptanan en fazla uzunluk 35 m, en fazla kalınlik 4,5 m kadardır. Mostraların bulunduğu en fazla yüksek 1610 m, en düşük yüksek ise 1380 m’dir. Doğu Kef’teki cevher, genelde masif ve breşleşmiştir. Cevher merceklerinin yan kayaçla ilişkileri karmaşık ve bütünleyile tektoniktir. Fay zonunda ve harzburjitter içerisinde bulunan krom merceklerinin yan kayaçla ilişkileri tektonik olmasına karşın, cevher merçeğinin yan kayaç ile iliski içerisinde görmek de mümkünür (Engin ve diğ., 1982).

Doğu Kef kesiminde yapılan galeri aramalarında cevherin varlığı 1377 m ve 1416 m galerilerinde saptanmıştır. Krom merceklerinde en fazla uzunluk 50 m, en fazla kalınlık ise son yıllarda yapılan çalışmalarla göre 35-50 m’ye kadar çıkmaktadır. Doğu Kef bölgesinde ilk madencilik çalışmalarları 1939 yılında araştır ve küçük çapta mostra madenciliği şeklinde

Şekil 6.8. Doğu Kef galeri girişinden bir görünüm.

Şekil 6.9. Doğu Kef galerisinde harzburjitler içerisinde dünit kıltıyla çevrili kromit cevheri.
6.2. Krom Cevherin Makroskobik Özellikleri

Guleman krom cevherleşmesinin büyük çoğunluğunu metalürjik özelliğe sahip olmasına rağmen Kapin bölgesindeki cevherler hem metalürjik hem de refrakter özellik gösterirler.

6.2.1. Masif Kromit

Masif kromitde ortalamta tane boyutu 0,1 mm ila 2,5-3 mm arasında olup gözle fark edilebilir boyuttadır. Tektonizmadan etkilenmiş cevher ise daha küçük parçalara ayrılmış olup taneleri çoğunlukla fark edilemez.

6.2.2. Saçınımlı - Bantlı Kromit

Guleman Bölgesinde masif kromitten sonra en fazla görülen cevher tipi saçınımlı -bantlı tipdeki krom cevherleştmesidir. Saçınımlı-bantlı kromitler; Aydınmar bölgesinde, Uzundamar- I ve Uzundamar- II kromit horizonlarında, Kapin Tepe’nin üst kesimindeki Beneklidamar zonunda, Şabate Tepe’nin 1080-1120 m kodlarında, Batı ve Doğu Kef bölgelerinde görülmektedir.

6.2.3. Nodüler Kromit

Guleman Krom cevherlesmesi bölgesinde nodüler kromit çok fazla görülmemesiyle beraber, Ayıpınarı bölgesinde Uzundamar cevher zonunun üst kesiminde, Kapin bölgesinde Kapin Tepenin üst seviyelerinde ve Şabate tepenin 1120 m kodundan daha üst seviyelerde, Rut-Lasir bölgesinde Rut 1488 ana nakliyat galerisinde bir miktar nodüler kromit görülmektedir.

Nodüler kromitlerin tane boyutları 0,3 cm ila 2 cm arasında değişmektedir. 0,3 cm’den küçük olanlar ise saçlımlı tip cevhere dahil edilmiştir. Nodüler cevheri, nodüllerin şekilleri düzgün ve elips şeklinde olanlar ve yuvarlaklığı daha kötü olanlar olmak üzere 2 kısına ayırtabiliriz. Elips şekilli nodüllerin uzun ekseni, kromit bantlarının genel uzanımına uygundur (Aslantaş, 2001).
6.3. Cevher Minerolojisi

Krom cevherleşmesinin mineralojik ve dokusal özelliklerini belirlemek amacıyla ve cevherli kütlede ve yan kayaçtan sistematik olarak örnekler alınmıştır. Alınan bu örneklerden yapılan parlak kesitler, cevher mikroskobunda incelenerek cevherin mineralojik ve dokusal özellikleri belirlenmeye çalışılmıştır.

Yapılan bu incelemeler sonucunda ana cevher minerali olarak kromit belirlenmiştir daha az oranlardaki manyetit, hematit, ilmenit ile pentlandit ve millerit gibi nikkel-sülfür mineralleri tespit edilmiştir.

6.3.1. Kromit (FeCr₂O₄)

Krom cevherlerinin mikroskobik incelenmeleri sonucu farklı dokular sergiledikleri görülmüştür. Araçlarda görülen masif kromitler cevher mikroskobunda, geçirdikleri deformasyon şiddetine uygun olarak, poligonal sınır ilişkili-öz şekilli kromit tanelerinde (Şekil 6.14, Şekil 6.15), özekilsiz-kataklastik dokulu kromit tanelerine kadar farklı şekillerde görülmektedir (Şekil 6.16).

Tektonizmadan etkilenen kromitlerde tektonizmanın etkisi belirgin bir şekilde izlenmekte, bu durum kromit kristallerinde bir uzama ve parçalanmaya neden olmuş ve kataklastik dokuyu oluşturmıştır (Şekil 6.16). Fay zon gibi zayıf zonlardan alınan kromit örnekleri incelendiğinde tektonizmadan etkilenen örneklerde kromit tanelerinin tamamıyla parçalanmış, ufalanmış ve öz şekilsiz olarak görüldüğü tektonizmadan daha az etkilenmiş örneklerde ise parçalanmış ve ufalanmış küçük kromit tanelerinin içinde büyük kromit taneleride görülmektedir.

Sarımlı–bantlı kromitlerin mikroskop incelemelerinde; tanelerin genelde yarı öz şekilli ve öz şekilsiz oldukları, masif kromitlere göre tektonizmadan daha az etkilendiği ve tenörlerinin daha düşük olduklarını görülmüştür.

Bazı kromit tanelerinin kenarları ve klivaj düzlemleri boyunca kapantı halinde silikat mineralleri gözlenmektedir. Silikat kapanmaları belirli klivaj düzlemlerini seçtiğienden kromitler içerisinde sıralanmış olarak izlenmektedir (Şekil 6.18).
Şekil 6.17. Masif kromitlerde çek ayrı dokunun mikroskopik görünümü.
Cr: Kromit. T.N.X32.

6.3.2. Manyetit (Fe₃O₄)

Manyetit öz şekilli veya yarı öz şekilli olup kromite göre biraz daha koyu renkli ve tane iriliği kromite yakın olarak bulunur (Şekil 6.19).

Kayaç içerisinde yer yer saçılan küçük taneler halinde ve az miktarda izlenmektedir. Serpantinleşmenin şiddetine ve silikat minerallerinin Fe içeriğine bağlı olarak, bazen olivin ve/veya piroksen minerallerinin kenarları veya diliminleri boyunca manyetit oluşumları görülmektedir (Şekil 6.20).

Hemen hemen her manyetit tanesinde hematit ayrımları (martitleşme) izlenmektedir. Manyetitin kromite göre daha önce veya daha sonra değilde kromitle eş zamanlı oluşmuş olabileceğini düşünülmektedir.

6.3.3. Hematit (Fe₂O₃)

Yapılan mikroskobik çalışmalar sonucunda demirce zenginleşmenin kuvvetli tektonizma geçiren örneklerde daha yaygın olduğu ve serpantinleşmenin daha yaygın izlendiği görülmuştur (Şekil 6.22). Belirtilen bu veriler dikkate alınarak kromitlerde görülen demirce zenginleşmede serpantinleşme sırasında birincil alterasyonun etkili olduğu düşünülmektedir.

6.3.4. İlmenit

İlk bakışta silikat minerallerine benzeyen ilmenit noktalı görünüşü ve iç yansımalaryla silikatlerden kolaylıkla ayırtedilebilir. Manyetitden daha az oranında bulunmakta ve genellikle altere olmuş durumdadır (Şekil 6.24).

6.3.5. Nikel Sülfür Mineralleri

6.3.5.1. Pentlandit (Fe,Ni)$_9$S$_8$

6.3.5.2. Millerit (NiS)

Bulunuşu pendlandit gibidir. Millerit; serpantin minerali içerisinde öşkevîzî küçük kristaller halinde, yarı öşkevî iğnemsi ve prizmatik bir şekilde izlenip, yüksek reflektivitesi, açık beyaz rengi ve özelliklede kuvvetli anizotropisi ile pentlanditten ayırt edilmektedir. (Şekil 6.30). Bazen de pentlandit ve millerit iç içe görülmektedir.

6.4. Krom Cevherleştirmelerinin Kökeni

Bushveld (stratiform) tipi yataklar; kratonlardaki tabakalı magmatik komplekslerin (lapolitlerin) ultrabazik seviyeleri içinde düzgün ve yayılımı geniş tabakalar halinde bulunurlar. Dünyanın en önemli Bushveld tipi yatakları, Güney Afrika Cumhuriyeti’ndeki Bushveld kompleksinin kromit yatakları ve Zimbabwe’deki Great Dyke kompleksi kromit yataklarındadır.

7. GULEMAN OFİYOLİYTİNİN VE KROMLARIN PGE İÇERİĞİ

7.1. PGE’lerin Jeokimyası

Birbirine benzer fiziksel ve kimyasal özellikleri gösteren, rutenyum (44Ru), rodyum (45Rh), palladyum (46Pd), osmiyum (76Os), iridyum (77Ir) ve platin (78Pt)’den oluşan ve periyodik cetvelde VIII A grubunda yer alan elementler platin gurubu elementler (PGE) olarak adlandırılır.

Mantodaki PGE’lerin kabuğa transferi manto kabuk etkileşim bölgeleri (manto parçalarının bindirmesi, manto kaynaklı eriyiklerin enjeksiyonu) gibi özel jeodinamik bölgelerde gerçekleşmektedir. PGE’ler türedikleri manto kaynağını petrolojik evrimi hakkında birçok bilgi verirler (Garuti ve diğ., 1997).

PGE’ler beraber bulunma şeklinde göre 2 alt gruba ayrılabilir. Bunlardan; İridyum Grubu- IPGE (Osmyyum, İridyum, Rutenyum) ve Palladyum Grubu- PPGE (Platin, Palladyum, Renyum) elementlerinden oluşur (Rollinson, 1993).

PGE’lerin İridyum grubu (IPGE) Palladyum Grubundan (PPGE) oldukça farklı davranış sergilerler. Bu iki grup silikat magmalarında değişik çözünürlükleriyle karakteristiktirler. IPGE’ler düşük ergime sıcaklığına sahip PGE’lere göre daha refrakter ve
daha uyumludurlar. PGE’lerin petrolojik işlev sırasında bu özgün jeokimyasal davranışları fraksiyonlaşma indeksi olarak bilinen Pd/Ir oranı ile belirtilir (Garuti ve diğ., 1997).

IPGE’ler genellikle kromit içinde anlaşılacak halinde veya düüitler içinde sulfitler halinde bulunur. PPGE’ler ise alta set birlikte norit, gabro ve düüitler içerisinde bulunan demir, nikel ve bakır sulfitlerle ilişkilidirler (Barnes ve diğ., 1985).

7.1.1. Meteoritlerin PGE İçerikleri

Meteoritlerde PGE içeriklerini belirlemek amacı ile bir çok çalışma yapılmıştır. Meteoritlerin PGE içerikleri 0,1 – 100 ppm arasında yüksek konsantrasyonlara sahip olduğu belirlenmiştir (Crocket, 1978).

Farklı meteoritlerdeki PGE konsantrasyonları aşağıdaki gibi değişmektedir:
1. Demir Meteoritler ; 1 – 10 ppm
2. Kondritler ; 0,1 – 2 ppm
3. Akondritler ; 1 – 100 ppb (Crocket, 1978).

Akondritlerin platin grubu metal içerikleri genelde ultramafik kayaçlara benzemektedir. Meteoritler içinde en fazla platin grubu metalleri içeren demir meteoritlerdir (Crocket, 1978).

7.1.2. Yaygın Kayaç Oluşturan Minerallerdeki PGE Dağılımı

Platin metallerinin kayaç oluşutan minerallerdeki dağılımı şöyledir.

7.1.3. Magmatik Kayaçlardaki PGE Dağılımı

Ultrabazik ve bazik kayaçlarda yapılan belli jeokimyasal çalışmalar; antrigorite – brusite taşıyan serpantinitlerin normal serpantinitlerden daha fazla Pt ve Pd’ce zenginleştiği

7.2. PGE’lerin Kullanım Alanları

Başta platinyum olmak üzere platin grubu metalerin oldukça geniş bir kullanım alanı vardır. Teknolojik gelişmelere, özellikle elektronik sanayinin büyümesine bağlı olarak bu metalerin kullanım miktarı ve alanı her geçen gün artmaktadır. Bu metalerin kullanım alanlarının bu denli geniş olmasının başlıca sebepleri; iletkenlik, özgül ağırlık, yüzey şartlarında kıyılmalıdır etkilere karşı direnç, ergime ve kaynama noktalarının yüksekliği, sertlik gibi teknolojik özellikleri (Temur, 1997).

Platin; kimya endüstrisinde, termokupul’larda sıcak dayanıklılığı, kimyasal reaktiflere reaksiyona girmemesi nedeni ile eritme kruzesi olarak; elektrik endüstrisinde, (tv, radyo, telefon gibi cihazların yapımında) potansiyometrelerde, ayrıca platin anodu olarak ve kobalt ile karıştırdığında en güçlü elektro – miknatısyapığı için, içinde cam eritilen pota imalinde, petrol endüstrisinde, kuyumculuk ile iletişim gereçlerinin üretiminde kullanılmaktadır.

İridyum, osmiyum, rutenyum ve rodyum platinisertleştirdiği gereçleri ile, geniş kullanım alanları bulunmaktadır.

Palladyum bir katalizör olarak dişçilik alanlarında ve hassas terazilerin yapımında kullanılır. Rodyumun birkaç kullanım alanı vardır; bunlardan termal uçların üretimi ve kruzelerde kullanımı bu alanlardan birkaçını oluşturmuştur (Read, 1970).

Platin grubu metalarden süs eşyası ve taki eşyalarının yapımında da kullanılmaktadır. Tel, elektrot, halka, x ışınları ile çalışan sistemler, asit üretim, fotoğrafçılıkta ve katalizör olarak platin grubu metaler önemli bir tüketim alanı oluşturmuştur (Temur, 1997).
Üretilen platin grubu metallerin kabaca %50’i elektrik ve elektronik sanayisinde, %25’i otomobil ve ilaç sanayiinde, %10’u kuyumculukta ve %15’i diğer alanlarda tüketilmektedir (Temur, 1997).

7.3. Guleman Ofiyoliti Ve Kromitlerin PGE İçerikleri

Bu çalışmada 8 adet kayaç örneği (dünit, harzburjít, piroksenit, gabro) ve 20 adet kromit örneği Canada ACME Analitik Laboratuarlarda analiz edilmiştir. Analizlerde Pt, Pd, Rh ve Au için ICP-MS yöntemi, Ir ve kromitlerin iz element içerikleri için ise Nötron Aktivasyon yöntemi kullanılmıştır. Bu analiz sonuçları Tablo 7.1’de verilmiştir.

Guleman Ofiyoliti çok değişken PGE içeriği ve oranlarını gösterir. Örneğin Rh kayaçlarda 0,05 ppb’lerde seyrederken krom örneklerinde 0,05 ppb’den 5,56 ppb’ye çıkmaktadır, Pt kayaçlarda 0,9 ppb 17,3 ppb iken krom örneklerinde 0,1ppb ila 19,6 ppb arasında değişmekte, Pd kayaçlarda 1,6 ppb ila 16,2 ppb arasında iken krom örneklerinde 0,5 ila 29,3 ppb arasında, Ir ise kromlarda -24 ppb’lerden 440 ppb’ye çıkmaktadır. Birimin Ni içeriğinde kayaçlarda 218 ppm ila 2227 ppm arasında, krom örneklerinde ise 1100 ppm’den 2400 ppm’e çıkmaktadır (Tablo 7.1).

Krom örneklerinin PGE içerikleri de ilkSEL mantoya göre normalleştirilmiş ve sonuçlar spider diyagramlarında değerlendirilmiştir (Şekil 7.3, Şekil 7.4). Buna göre Kapin Bölgesinde, ir ilkSEL mantoya göre 40-50 kat zenginleşmekte, Rh mantoya yakınık gösterirken, Pt ve Pd mantoya göre zenginleşmekte, Au ise mantoya göre 40-50 katın üzerinde zenginleştiği görülmektedir (Şekil 7.3).

Ayıpınar Bölgesinde, ir ilkSEL mantoya göre zenginleşmekte, Rh negatif anomali gösterip fakirleşmekte, Pt mantoya yakını ancak çoğunlar negatif bir anomali göstermekte ve mantoya göre fakirleşmektedir. Pd mantoya yakını fakat çoğunu örnekler mantoya göre zenginleşmekte ve Au ise yine mantoya göre zenginleşmektedir (Şekil 7.3).

Şabata Bölgesinde, ir ilkSEL mantoya göre 30-40, Rh 5-6 kat zenginleşmekte, Pt mantoya yakını ve mantoya göre fakirleşmekte, Pd mantoya yakını ve mantoya göre zenginleşmekte, Au ise yine mantoya göre zenginleşmektedir (Şekil 7.3).

Doğu ve Batı Kef Bölgelerinde, ir ilkSEL mantoya göre zenginleşmekte Rh, Pt, Pd mantoya göre fakirleşmekte ve Au ise yine mantoya göre zenginleşmektedir (Şekil 7.4).

Tüm krom örnekleri için yapılan diyagramda ir ilkSEL mantoya göre zenginleşmekte, Rh negatif bir anomali gösterip fakirleşmekte, Pt mantoya yakını ve mantoya göre fakirleşmekte, Pd mantoya yakını ve mantoya göre zenginleşmekte ve Au ise mantoya göre zenginleşmektedir (Şekil 7.3).
Tablo 7.1. Guleman Ofiyolitine ait kayaç ve krom örneklerinin PGE ve bazı element içerikleri

<table>
<thead>
<tr>
<th>Yabani Monto Değeri</th>
<th>%</th>
<th>ppb</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harzburjıt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0,853</td>
<td>10,7</td>
<td>10,3</td>
</tr>
<tr>
<td>3</td>
<td>1,146</td>
<td>8,7</td>
<td>5,4</td>
</tr>
<tr>
<td>Diünit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,047</td>
<td>8,8</td>
<td>8,5</td>
</tr>
<tr>
<td>15</td>
<td>0,513</td>
<td>8,3</td>
<td>7</td>
</tr>
<tr>
<td>Gabro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-1</td>
<td>0,230</td>
<td>17,3</td>
<td>12,1</td>
</tr>
<tr>
<td>G-2</td>
<td>0,230</td>
<td>0,9</td>
<td>1,6</td>
</tr>
<tr>
<td>Piroksenit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-1</td>
<td>0,694</td>
<td>16,3</td>
<td>16,2</td>
</tr>
<tr>
<td>P-2</td>
<td>0,414</td>
<td>2,7</td>
<td>8,5</td>
</tr>
<tr>
<td>Tenkella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-5</td>
<td>34</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>CA-9</td>
<td>36</td>
<td>2,7</td>
<td>5,4</td>
</tr>
<tr>
<td>Ayı Damar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-13</td>
<td>38</td>
<td>8,4</td>
<td>15,4</td>
</tr>
<tr>
<td>CA-17</td>
<td>42</td>
<td>3,5</td>
<td>5,7</td>
</tr>
<tr>
<td>Uzun Damar I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-24</td>
<td>30</td>
<td>1,4</td>
<td>6,4</td>
</tr>
<tr>
<td>CA-27</td>
<td>28</td>
<td>2,2</td>
<td>6,2</td>
</tr>
<tr>
<td>Uzun Damar II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-32</td>
<td>34</td>
<td>4,2</td>
<td>5,6</td>
</tr>
<tr>
<td>CA-39</td>
<td>33</td>
<td>2,4</td>
<td>5,5</td>
</tr>
<tr>
<td>Tepebaşı</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA-41</td>
<td>34</td>
<td>19,1</td>
<td>24</td>
</tr>
<tr>
<td>CA-46</td>
<td>36</td>
<td>5,7</td>
<td>5</td>
</tr>
<tr>
<td>KROMI T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Şabata Kapın</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-1</td>
<td>38</td>
<td>23</td>
<td>29,3</td>
</tr>
<tr>
<td>CK-2</td>
<td>36</td>
<td>15</td>
<td>25,6</td>
</tr>
<tr>
<td>CK-3</td>
<td>37</td>
<td>19,6</td>
<td>13,6</td>
</tr>
<tr>
<td>CS-1</td>
<td>35</td>
<td>8,4</td>
<td>7</td>
</tr>
<tr>
<td>CS-2</td>
<td>35</td>
<td>2</td>
<td>5,1</td>
</tr>
<tr>
<td>BATI REF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CB-1</td>
<td>24</td>
<td>0,1</td>
<td>0,5</td>
</tr>
<tr>
<td>CB-4</td>
<td>31</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>CB-7</td>
<td>16</td>
<td>0,2</td>
<td>0,5</td>
</tr>
<tr>
<td>CD-2</td>
<td>33</td>
<td>2,1</td>
<td>3,3</td>
</tr>
<tr>
<td>CD-3</td>
<td>38</td>
<td>1,5</td>
<td>1</td>
</tr>
</tbody>
</table>
Şekil 7.1. Guleman Ofiyolitine ait dünit, harzburjıt ve piroksenıtın PGE spider diyagramları.
Şekil 7.2. Guleman Ofiyolitine ait gabro ve tüm kayaçlar için yapılan PGE spider diyagramı.
Şekil 7.3. Guleman Ofiyolitine ait Kapin, Ayıpınar ve Şabata krom örneklerinin PGE spider diyagramları
Şekil 7.4. Guleman Ofiyolitine ait Doğu Kef, Batı Kef bölgeleri krom örnekleri ve tüm krom örneklerine ait PGE spider diyagramları
PGE'lerin birbirleriyle ilişkilerini belirlemek amacı ile Ir’a göre Pt, Pd, Rh , Ni, Au korelasyon diyagramları hazırlanmıştır (Şekil 7.5). Buna göre Ir’la Rh arasında pozitif bir ilişki (r= 0,58), Ir’la Pt , Pd, Ni ve Au arasında pozitif kötü bir ilişki olduğu görülmektedir (Şekil 7.6). Toplam PGE’ ler ile Ni beraber değerlendirilmiştir. Buna göre toplam PGE’ler ile Ni arasında zayıf pozitif bir ilişki vardır (r=0,40) (Şekil 7.7).

Platin Grubu Elementlerin birbirlerine göre davranışı belirlemek amacıyla beraber korele edilmiştir. Buna göre Pt ile Pd arasında kuvvetli bir ilişki (0,87), Pd ile Au arasında iyi bir ilişki (0,62), Co ile Ni arasında iyi bir ilişki (0,61), Zn ile Co arasında kuvvetli bir ilişki (0,93), Ir ile Cr arasında iyi bir ilişki (0,5), Ir ile Rh arasında iyi bir ilişki (0,58) olup Cr ile Au arasında kötü bir ilişki (0,03), Ir’la Ni arasında kötü bir ilişki (-0,03), Pt ile Cr arasında kötü bir ilişki (0,24), Ir ile Pd arasında kötü bir ilişki bulunmaktadır (Tablo 7.2)
Şekil 7.5. Ir’a göre Pt, Pd ve Ni’in korelasyon diyagramları.
Şekil 7.6. Ir’a göre Au ve Rh’ un korelasyon diyagramları.

Şekil 7.7. Toplam PGE’ye göre Ni’in korelasyon diyagramı.
Tablo 7.2. Guleman Ofiyolitine ait örneklerin PGE korelasyon katsayları.

<table>
<thead>
<tr>
<th></th>
<th>Cr (ppm)</th>
<th>Pt (ppb)</th>
<th>Pd (ppb)</th>
<th>Rh (ppb)</th>
<th>Ir (ppb)</th>
<th>Au (ppb)</th>
<th>Hf (ppb)</th>
<th>Co (ppb)</th>
<th>Zn (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>1</td>
<td>0,24</td>
<td>0,10</td>
<td>-0,20</td>
<td>0,50</td>
<td>-0,03</td>
<td>0,13</td>
<td>-0,35</td>
<td>-0,53</td>
</tr>
<tr>
<td>Pt</td>
<td>0,24</td>
<td>1</td>
<td>0,05</td>
<td>0,06</td>
<td>0,38</td>
<td>0,62</td>
<td>0,13</td>
<td>0,05</td>
<td>0,02</td>
</tr>
<tr>
<td>Pd</td>
<td>0,10</td>
<td>1</td>
<td>0,38</td>
<td>0,58</td>
<td>0,58</td>
<td>0,31</td>
<td>0,30</td>
<td>0,06</td>
<td>0,29</td>
</tr>
<tr>
<td>Rh</td>
<td>-0,20</td>
<td>0,05</td>
<td>0,38</td>
<td>1</td>
<td>0,13</td>
<td>0,13</td>
<td>0,17</td>
<td>0,11</td>
<td>0,23</td>
</tr>
<tr>
<td>Ir</td>
<td>0,50</td>
<td>0,38</td>
<td>0,58</td>
<td>1</td>
<td>0,27</td>
<td>0,13</td>
<td>0,06</td>
<td>0,02</td>
<td>0,23</td>
</tr>
<tr>
<td>Au</td>
<td>-0,03</td>
<td>0,62</td>
<td>0,31</td>
<td>0,27</td>
<td>1</td>
<td>0,13</td>
<td>0,17</td>
<td>0,11</td>
<td>0,23</td>
</tr>
<tr>
<td>Hf</td>
<td>0,13</td>
<td>0,13</td>
<td>0,30</td>
<td>0,17</td>
<td>0,11</td>
<td>0,13</td>
<td>0,61</td>
<td>0,34</td>
<td>0,34</td>
</tr>
<tr>
<td>Co</td>
<td>-0,35</td>
<td>0,62</td>
<td>0,17</td>
<td>0,61</td>
<td>0,34</td>
<td>0,23</td>
<td>1</td>
<td>0,93</td>
<td>1</td>
</tr>
<tr>
<td>Zn</td>
<td>-0,53</td>
<td>-0,15</td>
<td>0,23</td>
<td>0,23</td>
<td>0,34</td>
<td>0,23</td>
<td>1</td>
<td>0,93</td>
<td>1</td>
</tr>
</tbody>
</table>

7.4. Guleman Bölgesiyle Dünyanın Bazı Bölgelerinin PGE İçerikleri Karşılaştırılması

Guleman Bölgesi’ndeki kayaç ve kromitlerin PGE içerikleri dünyadaki bazı bazık-ultrabazık kayaçlar (Urallar) ve ofiyolitik kayaçlar (Kudi Ofiyoliti, El Tigre, Dalabute Ofiyoliti) ile beraber değerlendirilmiştir (Tablo 7.3).

Buna göre Guleman Ofiyolitine ait dünitlerin PGE içerikleri diğer bölgelerle karşılaştırıldıklarında; Rh değerinin düşük olduğunu, Pt, Pd ve Au’nun ofiyolitik kayaçlara (Dalabute ofiyoliti, Kudi ofiyoliti) benzer bazık kayaçlara (Urallar) göre fakir olduğunu, Cr, Ni ve Cu içeriğinin de yine diğer bölgelere benzer olduğu görülmektedir (Tablo 7.3).

Guleman Ofiyolitine ait harzburgitlerin PGE içerikleri diğer bölgelerle karşılaştırıldıklarında; Rh değerinin düşük olduğunu, Pt ve Pd değerlerinin Kudi ofiyolitinden zengin, Dalabute ofiyolitine yakını, bazık kayaçlardan (Urallar) fakir olduğu, Au’nun Kudi ve Dalabute ofiyolitlerine göre yüksek, bazık kayaçlara (Urallar) göre düşük olduğu ve yine Cr, Ni, Cu’ın diğer bölgelere benzer değerlerde olduğu gözlemektedir (Tablo 7.3).

Guleman Ofiyolitine ait gabbro ve pirokseinitlerin PGE içerikleri diğer bölgelerle karşılaştırıldıklarında; her ikisinde de Rh değerinin düşük olduğunu, gabrolarda Pt ve Pd’un diğer bölgelere benzer değerlerde, pirokseinitlerde Pt’nin Kudi ofiyolitine göre yüksek, Pd’un benzer değerlerde izlendiği ve yine her ikisinde de Au, Ni, Cr ve Cu değerlerinin dünyannın diğer bölgelere benzer değerlerde olduğu görülmektedir (Tablo 7.3).

Guleman Ofiyolitine ait kromitlerin PGE içerikleri dünyannın diğer bölgeleriyle karşılaştırıldıklarında; Ir’un yüksek değerlerde bulunduğu, Pt ve Pd’un Merensky Reef ve Bushveld Kompleksinden düşük (fakir) Dalabute ofiyolitinden yüksek değerlerde, Au’nnın diğer bölgelere göre daha yüksek değerlerde olduğu görülmektedir (Tablo 7.3).
Tablo 7.3. PGE’ın Guleman Ofiyoliti ve dünyanın diğer bölgeleriyle karşılaştırması.

<table>
<thead>
<tr>
<th>ÖRNEK</th>
<th>Os</th>
<th>Ir</th>
<th>Ru</th>
<th>Rh</th>
<th>Pt</th>
<th>Pd</th>
<th>Au</th>
<th>Cr</th>
<th>Ni</th>
<th>Cu</th>
<th>Ni/Cu</th>
<th>Pd/ Ir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppb</td>
<td>%</td>
<td>ppm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Düñit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urallar(1)</td>
<td>1.5</td>
<td>2.0</td>
<td>0.4</td>
<td>13</td>
<td>2.0</td>
<td>3.8</td>
<td>1528</td>
<td>1.1</td>
<td>1389</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kudi Ofiyoliti(2)</td>
<td>0.15</td>
<td>0.54</td>
<td>0.09</td>
<td>3.4</td>
<td>0.5</td>
<td>22.7</td>
<td>0.05</td>
<td>8.3</td>
<td>7</td>
<td>2</td>
<td>0.513</td>
<td>2227</td>
</tr>
<tr>
<td>Dalabute Ofiyoliti(1)</td>
<td>4.26</td>
<td>11.4</td>
<td>1.28</td>
<td>8.28</td>
<td>6.88</td>
<td>1.6</td>
<td>1830</td>
<td>14</td>
<td>130</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Tigre(4)</td>
<td>0.3</td>
<td>5.5</td>
<td>1.0</td>
<td>11.0</td>
<td>19.0</td>
<td>12</td>
<td>1.313</td>
<td>1120</td>
<td>113</td>
<td>9.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guleman Ofiyoliti</td>
<td>0.05</td>
<td>8.8</td>
<td>8.5</td>
<td>5</td>
<td>1.047</td>
<td>1919</td>
<td>17</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harzburjit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urallar(1)</td>
<td>16</td>
<td>12</td>
<td>3.1</td>
<td>34</td>
<td>27</td>
<td>119</td>
<td>2157</td>
<td>16</td>
<td>135</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kudi Ofiyoliti(2)</td>
<td>0.22</td>
<td>0.61</td>
<td>0.67</td>
<td>0.66</td>
<td>2.1</td>
<td>2052</td>
<td>12</td>
<td>171</td>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalabute Ofiyoliti(1)</td>
<td>3.48</td>
<td>6.32</td>
<td>1.20</td>
<td>7.68</td>
<td>7.91</td>
<td>1.8</td>
<td>2335</td>
<td>15</td>
<td>156</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guleman Ofiyoliti</td>
<td>0.05</td>
<td>10.7</td>
<td>10.3</td>
<td>7</td>
<td>0.853</td>
<td>2149</td>
<td>15</td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urallar(1)</td>
<td>4.2</td>
<td>1.4</td>
<td>1.2</td>
<td>50</td>
<td>48</td>
<td>6.5</td>
<td>85</td>
<td>67</td>
<td>1.26</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kudi Ofiyoliti(2)</td>
<td>0.12</td>
<td>1.32</td>
<td>0.53</td>
<td>1.58</td>
<td>16.38</td>
<td>0.6</td>
<td>13</td>
<td>134</td>
<td>0.09</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Tigre(4)</td>
<td>0.2</td>
<td>0.1</td>
<td>2.5</td>
<td>0.8</td>
<td>13</td>
<td>15</td>
<td>0.1</td>
<td>463</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guleman Ofiyoliti</td>
<td>0.05</td>
<td>16.3</td>
<td>16.2</td>
<td>3</td>
<td>0.694</td>
<td>239</td>
<td>5.9</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piroksenit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kudi Ofiyoliti(2)</td>
<td>0.15</td>
<td>1.92</td>
<td>2.43</td>
<td>0.27</td>
<td>2.27</td>
<td>1.14</td>
<td>0.76</td>
<td>17</td>
<td>0.5</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guleman Ofiyoliti</td>
<td>0.05</td>
<td>16.3</td>
<td>16.2</td>
<td>3</td>
<td>0.694</td>
<td>239</td>
<td>5.9</td>
<td>40.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablo 7.3'ün devamı: PGE’ in Guleman Ofiyoliti ve dünyanın diğer bölgeleriyle karşılaştırması

<table>
<thead>
<tr>
<th>ORNEK</th>
<th>Os</th>
<th>Ir</th>
<th>Ru</th>
<th>Rh</th>
<th>Pt</th>
<th>Pd</th>
<th>Au</th>
<th>Cr</th>
<th>Ni</th>
<th>Cu</th>
<th>Ni/Cu</th>
<th>Pd/Ir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kromit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merensky Reef (1)</td>
<td>1.0</td>
<td>1.2</td>
<td>7.7</td>
<td>3.5</td>
<td>55.7</td>
<td>24.2</td>
<td>6.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>1.4</td>
<td>7.6</td>
<td>4.4</td>
<td>57.5</td>
<td>25.3</td>
<td>2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>59</td>
<td>26</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bushveld Kompleksi (1)</td>
<td>12.9</td>
<td>4.8</td>
<td>59.8</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.8</td>
<td>16.2</td>
<td>52.8</td>
<td>15.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.7</td>
<td>10.3</td>
<td>45.8</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7</td>
<td>4.2</td>
<td>10.2</td>
<td>7.6</td>
<td>40.8</td>
<td>34.3</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>15.3</td>
<td>8.2</td>
<td>43.7</td>
<td>31.1</td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.1</td>
<td>8.8</td>
<td>53.0</td>
<td>18.7</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>4.3</td>
<td>10.5</td>
<td>8.9</td>
<td>53.8</td>
<td>20.7</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>18.0</td>
<td>9.4</td>
<td>44.8</td>
<td>25.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.1</td>
<td>8.9</td>
<td>52.2</td>
<td>15.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.8</td>
<td>8.1</td>
<td>64.3</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalabute Ofiyoliti (2)</td>
<td>17.6</td>
<td>24.6</td>
<td>7.0</td>
<td>2.54</td>
<td>4.78</td>
<td>2.75</td>
<td>1.8</td>
<td>1884</td>
<td>22</td>
<td>86</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>36.3</td>
<td>2.73</td>
<td>3.95</td>
<td>3.19</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7.38</td>
<td>0.94</td>
<td>2.13</td>
<td>4.27</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>6.8</td>
<td>0.5</td>
<td>1.67</td>
<td>0.28</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.05</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>0.05</td>
<td>2.7</td>
<td>5.4</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>1.5</td>
<td>8.4</td>
<td>15.4</td>
<td>2</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>0.05</td>
<td>3.5</td>
<td>5.7</td>
<td>1</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>0.79</td>
<td>2.2</td>
<td>6.2</td>
<td>6</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>0.05</td>
<td>2.4</td>
<td>5.5</td>
<td>5</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>0.93</td>
<td>19.1</td>
<td>24</td>
<td>4</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>0.05</td>
<td>5.7</td>
<td>5</td>
<td>8</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guleman Ofiyoliti (Aynınar Bölgesi)</td>
<td>130</td>
<td>1,69</td>
<td>23</td>
<td>29,3</td>
<td>21</td>
<td>38</td>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>0,94</td>
<td>15</td>
<td>25,6</td>
<td>47</td>
<td>36</td>
<td>2200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>0,83</td>
<td>19,6</td>
<td>13,6</td>
<td>7</td>
<td>37</td>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guleman Ofiyoliti (Şabata)</td>
<td>440</td>
<td>5,56</td>
<td>8,4</td>
<td>7</td>
<td>4</td>
<td>35</td>
<td>1400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>3,98</td>
<td>2</td>
<td>5,1</td>
<td>12</td>
<td>35</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guleman Ofiyoliti (Batı Kef)</td>
<td>45</td>
<td>1,68</td>
<td>0,1</td>
<td>0,5</td>
<td>1</td>
<td>24</td>
<td>2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1,96</td>
<td>0,8</td>
<td>0,8</td>
<td>2</td>
<td>31</td>
<td>2400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-24</td>
<td>0,06</td>
<td>0,2</td>
<td>0,5</td>
<td>1</td>
<td>16</td>
<td>2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guleman Ofiyoliti (Doğu Kef)</td>
<td>110</td>
<td>0,10</td>
<td>2,1</td>
<td>3,3</td>
<td>3</td>
<td>33</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>0,85</td>
<td>1,5</td>
<td>1</td>
<td>2</td>
<td>38</td>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.5. Türkiye’deki Bazik-Ultrabazik Kayaçların PGE Metal İçerikleri

Türkiye’de ekonomik platin grubu metaller bulunmamakla birlikte, bazı kromitli bölgelerde yapılan incelemeler sonucunda bir takım platin grubu metaller rastlanmıştır.

Platin grubu element zenginleşmesi genellikle büyük ölçekli tabakalı mafik ultramafik intrüzyonlar (Stillwater ve Busveld) veya komatitik karakterli yeşilkaya kuşakları içerisinde kromit ve nikel sülfür cevherleşim ile birlikte görülür (Naldrett, 1981).

Ofyolitik kompleksler içerisinde platin grubu element zenginleşmesi çok düşüktür. Ancak podiform kromitler içerisindeki zenginleşmeler az da olsa bir çok bölge de belirlenmiştir (Mathez ve Peach, 1939; Naldrett ve Gruenewaldt; Uçurum, 2000’den).

Son çalışmalar göstermektedir ki damar, kıbrıs ve makaslama zonlarında mağmatik olmayan sülfürler veya arsenidler ve lisvenitler içerisinde platin grubu elementler geç – evre hidrotermal çözeltileşer yeniden hareketlilik kazanarak çökelmiştir (Rowell ve Edgar, 1986; Lechler, 1995; Uçurum, 2000’den).

Kızıldağ (Hatay) ofyolitine bağlı kromit yataklarında yapılan çalışmalararda yalnızca birkaç kesitte varlığı net olarak saptanan Osmiyum (O₃) minerallerine rastlanmıştır. Büyükliği 10 mikronun altında olan öz ve yarım özkelli bu minerallin kromit kristalleri içindeki silikat inklüzyonuna bağlı olduğu görülmüştür. Kromite göre sertliği yüksek (7) olduğu için çokça
güç parlayan bu mineral kuvvetli şekilde anizotropi gösterir ve kırıkzımsıtonlarında iç yansıma verirler (Anıl ve Yaşar, 1989).

Akdeniz ofiyolit kuşağında yataklandırak kromit yataklarında gerçekleştirdiği bir çok çalışmada daha çok kromitlerin içindeki silikat kapanımlarına bağlı, seyrek olarak da kromit kristallerinin kırık ve çatıklarıyla serpantinleşmiş düünitik gang içinde bazı platin grubu mineralleri saptanmıştır. Stratiform tipindeki kromit yataklamalarına göre oldukça çok küçük konsantrasyonlarda görülebilen platin grubu minerallerinin optik metodlarla tayini oldukça güç olmaktadır. PGM’lerin tayinindeki güçlüklerin başında mineral boylarıın çok küçük (5-30 mikron) ve dağılımında seyrek olması, gelmektedir (Anıl, 1992).

Mersin ofiyolitlerinden alınan kromitler içerisinde platin grubu metallerin birkaç ppb ile 100 ppb arasında değiştiği bildirilmektedir (Yaman, 1991).

Elazığ Guleman krom yatakları üzerine yapılan çalışmaldan alınan örneklerde; platin grubu metallerine rastlanmıştır. Guleman krom yataklarından alınmış örneklerde platin grubu metallerin dağılımı Tablo 7.4’ deki gibidir (Talkington ve Watkinson, 1989; Uçurum 2000’den).

<table>
<thead>
<tr>
<th>PGM</th>
<th>Örn.1</th>
<th>Örn.2</th>
<th>Örn.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os</td>
<td>28,54</td>
<td>29,99</td>
<td>28,38</td>
</tr>
<tr>
<td>Ru</td>
<td>6,11</td>
<td>6,74</td>
<td>12,00</td>
</tr>
<tr>
<td>Ir</td>
<td>49,85</td>
<td>52,38</td>
<td>49,06</td>
</tr>
<tr>
<td>Rh</td>
<td>0,14</td>
<td>0,15</td>
<td>0,26</td>
</tr>
</tbody>
</table>
8. EKONOMİK JEOLOJİ

Guleman Bölgesinde çevherleşme genellikle masif olup, Batı Kef Bölgesi ise saçınımlı-bantlı cevher içermektedir. Cevherin tenörü ortalama % 40-45 olup, rezervi yaklaşık 8 milyon/tondur.

9. SONUÇLAR VE ÖNERİLER

1. Yapılan petrografik çalışmalar sonucu Guleman Ofiyolitinin dünit, harzburjıt, verlit, klinopiroksenit, olivlini gabro, klinopiroksenli gabro, izotrop gabro, bantlı gabro, tekil diyabaz dayklar, levha daykı karmaşı ile bazik volkanik kayaçlardan oluştuğu tespit edilmiştir.

2. Önceki çalışmalararda oluştum yasağ şehit jeotektonik ortamı tartışılan Caferi Volkanitlerinin Guleman Ofiyolitlerine ait olduğu yönünde veriler elde edilmiştir. Ancak bu birim üzerinde daha detaylı çalışmalar yapılıması gerekir. Daha önceki çalışmalar levha daykı karmaşı ile bazik volkanik kayaçların gözlenmemiş ve eksik bir ofiyolit istif olarak tanımlanan Guleman ofiyoliti, Caferi Volkanitlerinin Guleman Ofiyolitlerine dahil edilmesi ile eksik deildir tam bir ofiyolit istifi düştünülmektedir.

4. Guleman Ofiyoliti içerisinde krom cevherleşmesinin mineralojik ve dokusal özellikleri belirlemek amacı yapılan incelemler sonucu; ana cevher minerali olarak kromit daha az oranlarda manyetit, ilmenit, hematit, nikel sülfür minerallerinden pendlandit ve millerit mineralleri tespit edilmiştir.

5. Yapılan analiz sonuçlarına göre Guleman Ofiyoliti çok değişken PGE içeriği ve oranlarını gösterir. Rh kayaçlarında 0.05 ppb’lerde seyreden krom örneklerinde 5.56 ppb’ye, Pt kayaçlarında 17.3 ppb iken krom örneklerinde 19.6 ppb, Pd kayaçlarında 16.2 ppb krom örneklerinde 29.3 ppb arasında, Ir ise kromlarda 440 ppb’ye çıkmaktadır. Guleman ofiyolitinin Au içeriği kayaçlarında 7 ppb, krom örneklerinde 47 ppb’ye, Ni içeriği ise kayaçlarında 2227 ppm iken krom örneklerinde 2400 ppm’e çıkmaktadır.

6. Guleman ofiyolitine ait kayaçların analiz sonuçları ilksel mantol değerlerine göre normalleştirilmiş ve sonuçlar spider diyagramlarında kullanılmıştır. Tüm kayaçlar için yapılan diyagramda özetle; Rh negatif bir anomali gösterip ilksel mantoya göre fakirleşmekte, Pt ve Pd ilksel mantoya yakın ve ilksel mantoya göre zenginleşmekte, Au ise yine ilksel mantoya göre zenginleştirilmiş görülmektedir.

7. Krom örnekleri de ilksel mantoya göre normalleştirilmiş ve sonuçlar spider diyagramlarında değerlendirilmiştir. Buna göre; Ir ilksel mantoya göre zenginleşmekte, Rh negatif bir anomali gösterip fakirleşmekte, Pt ilksel mantoya yakın ve ilksel mantoya göre fakirleşmekte, Pd ilksel mantoya yakın ve ilksel mantoya göre zenginleşmekte ve Au ise ilksel mantoya göre zenginleşmekteird.
8. Guleman Bölgesi’ndeki kayac ve kromitlerin PGE içerikleri dünyadaki bazı bazik-ultrabazik kayaclar (Urallar) ve ofiyolitik kayaclar (Kudi Ofiyoliti, El Tigre, Dalabute Ofiyoliti) ile beraber değerlendirilmiştir. Buna göre Guleman Ofiyolitine ait kayacların PGE içerikleri diğer bölgelere karşılaştırıldıklarında; Rh değerinin diğer bölgelere göre düşük olduğunu, Pt, Pd ve Au’nun ofiyolitik kayacılara (Dalabute ofiyoliti, Kudi ofiyoliti) benzer bazik kayacılara (Urallar) göre fakir olduğunu, Cr, Ni ve Cu içeriğinin de yine diğer bölgelere benzer olduğu görülmektedir. Guleman Ofiyolitine ait kromitlerin PGE içerikleri dünyanın diğer bölgeleriyle karşılaştırıldıklarında; Ir’ın diğer bölgelere göre yüksek olduğunu, Pt ve Pd’un Merensky Reef ve Bushveld Kompleksinden düşük Dalabute ofiyolitinden yüksek değerlerde, Au’nun diğer bölgelere göre yüksek değerlerde olduğu görülmektedir.

10. KAYNAKLAR

Akgül, M., 1993, İslamköy (Kulp- Diyarbakır) yöresindeki Bazik ve Ultrabazik Kayaçlar ile ilgili Cevherleşmeler, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 116s, (yayılmamamış).

Anıl, M., Yaşar, E., 1989, Kızıldağ (Hatay) ofiyolitine bağlı kromit yataklarında görülen dönüşüm (Co-Ni-Fe) ve bazı Pt grubu mineralleri, Yerbilimcinin Sesi, 17, 49-58.

Anıl, M., 1992, Pozantı Karsanı, Mersin ve Kızıldağ (Hatay) Ofiyolitleri içinde görülen kromitlerdeki dönüşüm ve bazı Pt grubu mineralleri, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 7, 31-44.

Arikal, R.T. ve Taşan, N., 1986, Guleman krom yatakları. Etkrom A.Ş. Yayını, 86/01, Elazığ, s.98.

Aslantaş, N., 2001, Kapın-Şabata (Guleman-Elazığ) Krom cevherleşmesinin incelenmesi, Fırat Üniversitesi Fen Bilimleri Enstitüsü,Yüksek Lisans Tezi, 54s, (yayılmamamış).

Beyarslan, M., 1996, Kömürhan ofiyolit biriminin Petrografik ve Petrolojik İncelenmesi, F.Ü. Fen Bilimleri Enstitüsü, Doktora Tezi, 90s, (yayılmamamış).

Beyarslan, M. and Bingöl, A.F., 2000, Petrologyof a supra-subduction zone ophiolite (Elazığ, Turkey), Earth Sciences, 37, 1411-1423.

Bingöl, A.F., 1986, Petrographic and petrological characteristics of intrusive rocks of Guleman ophiolite (Eastern Taurus –Turkey), Geosound, 13/14, 41-57.

Bingöl, A.F., 1987, New findings on the structural setting on the chromites in the Guleman ophiolitic massive (Eastern Taurus), Jour. F. University, Sci. and Tech, 1, 37-46.

Çağatay, A., 1979, Yamaç ve akarsu plaserlerinde dünya ve Türkiye’den bazı örnekler, Yeryuvarı ve İnsan, 4, 4, 16.

Çakır, Ü., 1994, Batı Kef krom yatağının (Guleman-Elazığ) jeolojik özellikleri, Türkiye Jeoloji Bülteni, 37/2,15-29.

Engin, T., 1985, Petrology of the peridotite and structural setting of the Bati Kef-Doğu Kef chromite deposits, Guleman-Elazığ, Eastern Turkey, Metallogeny of basic and ultrabasic rocks, Edinburg, 229-240.

Engin, T. ve Sümer, Y., 1987, Kefdağ- Kapin (Guleman-Elazığ) yöresinin jeolojisi, Bati Kef Doğu Kef krom yataklarının maden jeolojisi raporu, M.T.A. Genel Müdürlüğü, Rapor No. 2080.

Erdoğan, B., 1977, Geology, geochemistry and genesis of the sulphide deposits of the Ergani-Maden region, SE Turkey: Univ. of New Brunswick, Doktora tezi (yayılmamamış).

Http// www.platinum.matthey.com

Kılıç, A.D., 2005, Hazar Gölü (Sivrice-Elazığ) güneyinin petrografik ve petrolojik özellikleri, F.Ü. Fen Bilimleri Enstitüsü, s:103, Doktora tezi (yayılmamış).

Khalatbari –Jafari, M., Juteau, T., Bellon, H. and Emami, H., 2003, Discovery of two ophiolite complexes of different ages in the Khoy area (NW Iran), Geoscience, 335, 917-929.

Melcher, F., 2000, Base Metal- platinum-group element sulfides from the Urals and the Eastern Alps: characterization and significance for mineral systematics, Mineralogy and Petrology, 68, 177-211.

Nas, H., 1979, Elazığ-Palu dolayının jeolojisi, TPAO Rapor No: 1360 (Yayımlanmamış).

Örün, H., 2002, Rut ve Lasir (Guleman-Elazığ) bölgesi krom yataklarının jeolojisi ve jeokimyası, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 57s, (yayımlanmamış).

Özkan, Y.Z., 1983a, Guleman (Elazığ) ophiolitinin yapısal incelenmesi, MTA Dergisi, 37,78-85.

Özkan, Y.Z. 1984, Guleman ophiolitinde metamorfizma etkileri, MTA Dergisi, 47-57.

Özsoy, S., 2001, Ayıpmarı (Guleman-Elazığ) krom cevherleşmesinin incelenmesi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 52s, (yayımlanmamış).

Pearce, J.A. and Norry, M.J., 1979, Petrogenetic implications of Ti, Zr, Y and Nb variation in volcanic rocks, Contribution to Mineralogy and Petrology, 69, 33-47.

Perinçek, D., 1980, Bitlis metamorfitlerinde volkanitli Triyas, T.J.K. Bülteni, 23, 201-211.

Puchtel, I.S. and Humayun, M., 2001, Platinum group element fractionation in a komatitic basalt lava lake, Geochemistry at cosmochemistry acta, 65, 2979-2993.

Sawkins, F. J., 1984, Metal deposit in relation to plate tectonics springer verlag, 325, Tokyo.

Schmidt, G., Witt-Eickschen, G., Palme, H., Seck, H., Spettel, B., Kratz and K., 2003, Highly siderophile elements (PGE, Re and Au) in mantle xenolits from the West Eifel volcanic field (Germany), Chemical Geology, 196, 77-105.

Tuna, E., 1979, Elazığ-Palu-Pertek bölgesinin jeolojisi: TPAO arşiv No:1363 (Yayımlanmamış).

ÖZGEÇMİŞ