T.C.
FIRAT ÜNİVERSİTESİ TIP FAKÜLTESİ
GENEL CERRAHİ ANABİLİM DALI

ANTİ-VASKÜLER ENDOTELYAL GROWTH
FAKTÖRÜN LAPARATOMİZE RATLARDA ADEZYON
OLUŞMASI ÜZERİNE ETKİSİİNİN ARAŞTIRILMASI

UZMANLIK TEZİ
DR. MURAT BAŞBUĞ

TEZ DANİŞMANI
DOÇ. DR. NURULLAH BÜLBÜLLER

ELAZIĞ–2008
DEKANLIK ONAYI

Prof. Dr. Ömer L. ERHAN

DEKAN

Bu tez Uzmanlık Tezi standartlarına uygun bulunmuştur.

Prof. Dr. Yavuz Selim İLHAN
Genel Cerrahi Anabilim Dalı Başkanı

Tez tarafımızdan okunmuş, kapsam ve kalite yönünden Uzmanlık Tezi olarak kabul edilmiştir.

Doç. Dr. Nurullah BÜLBÜLLER
Genel Cerrahi Anabilim Dalı Öğretim Üyesi

Danışman

Uzmannık Sınavı Juri Üyeleri

.. ..
.. ..
.. ..
.. ..
.. ..
.. ..
TEŞEKKÜR

Asistanlık eğitimin süresince her konuda yardımları esirgemeyen başta anabilim dalı başkanımız Prof.Dr. Yavuz Selim İLHAN’a daha sonra çok değerli hocalarımız Prof.Dr. Osman DOĞRU, Doç.Dr. Ziya ÇETİNKAYA, Doç.Dr. Nurullah BÜLBÜLLER, Doç.Dr. Cemalettin CAMCI, Doç.Dr. Erhan AYGEN, Yrd. Doç.Dr. Refik AYTEN’e sonsuz teşekkürlerimi bildirim.

Uzmanlık eğitimin süresince birlikte çalıştığım tüm asistan arkadaşlarına ve Genel Cerrahi Kliniğinin personeline teşekkür ederim.
İÇİNDEKİLER

KISALTMALAR LİSTESİ .. vii
TABLO LİSTESİ .. x
ŞEKİL LİSTESİ .. xi
1. ÖZET .. 1
2.ABSTRACT ... 2
3. GİRİŞ .. 3
 3.1 Periton .. 6
 3.2 Peritoneal Sıvı .. 6
 3.3 Yapışıklıkların Önemi ... 8
 3.4 Normal Peritoneal İyileşme ... 10
 3.5 Yapışıklıkların Patogenezi ve Moleküler Olaylar ... 13
 3.5.1 Doku Travması ve Fibrin Bandlarının Gelişimi ... 15
 3.5.2 Yapışık Gelişiminde İnflamatuar Aracılığın Rolü ... 17
 3.5.2.1 Kemokinlerin Rolü ... 20
 3.5.3 Peritoneal Doku Tamiri ... 23
 3.5.3.1 Büyüme Faktörlerinin Rolü .. 24
 3.5.3.2 Sitokinlerin Rolü .. 25
 3.5.4 Yapışık Gelişiminde Doku Yeniden Yapılanması .. 27
 3.5.4.1 Fibrinolitik Sistemin Rolü .. 30
 3.5.4.2 Matriks Metalloproteinazların Rolü ... 32
 3.5.4.2.1 MMP ve TIMP: Adezyon Formasyon / Reformasyonunda ve Fibrinolizisteki Önemi ... 33
 3.6 Yapışıklıkların Önlenmesi ... 33
 3.6.1 Cerrahi Teknikler ... 34
 3.6.1.1 Doku Hasarı ... 34
 3.6.1.2 Peritona konan dikişler .. 35
 3.6.1.3 Yabancı Maddeler ... 36
 3.6.1.4 Gause’lı bez ... 36
 3.6.1.5 İntraperitoneal Kan Depozitleri .. 36
 3.6.1.6 Minimal İnvaziv Cerrahi .. 37
 3.6.2. Farmakolojik Destekleyici Tedavi .. 37
3.6.2.1 Nonsteroid Anti-İnflamatuvar İlaçlar (NSAID) ..38
3.6.2.2 Glikokortikoid ve Antihistaminik İlaçlar ..38
3.6.2.3 Progesteron/Östrojen ..39
3.6.2.4 Antikoagülanlar ..39
3.6.2.5 Fibrinolitikler ..39
3.6.2.7 Antibiyotikler ..40
3.6.3 Adjuvan Bariyer Tedavisi ..40
3.6.3.1 Bariyer Solüsyonları ..41
3.6.3.1.1 Kristaloidler ...41
3.6.3.1.2 %32 Dextran 70 ..42
3.6.3.1.3 Hyaluronik Asit (HA): ..43
3.6.3.1.4 HA ile Kombine Fosfat-Tamponlu-Tuzlar (HA-PBS)43
3.6.3.1.5 Karboksimetilselüloz: ...43
3.6.3.2 Katı Bariyerler ..44
3.6.3.2.1 Otolog Peritoneal Transplantlar ..44
3.6.3.2.2 Sentetik Katı Bariyerler ..44
3.6.3.2.2.1 Gore-tex ..44
3.6.3.2.2.2 Interceed: ..45
3.6.3.2.2.3 Seprafilm (HA-CMC) ...46
3.7 Anjiyogenez ve Peritoneal Yapışıklık ...47
3.7.1 Vasküler Patogenezisde Vasküler Endotelyal Growth Faktörün Yeri50
3.7.1.1 VEGF Yapısı ve Fonksiyonu ..51
3.7.1.2 Vasküler Endotelyal Growth Faktör Reseptörleri52
3.7.2 Anjiyojenik Faktörlerin İnhibisyonu...54
3.7.2.1 Anti VEGF Stratejileri ...54
3.7.2.1.1 VEGF’e Yönelik Monoklonal Antikorlar54
3.7.2.1.2 VEGF Reseptörlerine Yönelik Tedaviler55
3.7.2.1.3 VEGF Reseptör Tirozin Kinaz İnhibitörleri56

4.GEREÇ VE YÖNTEM ...58
4.1 Deneklerin Hazırlanması ..58
4.2. Deneklerin Gruplara Ayrılması ...58
4.3. Anestezi ve Cerrahi İşlem ..58
4.4 Sonuçların Değerlendirilmesi ..59
4.5 Histopatolojik inceleme ...60

5. BULGULAR ..61

6. TARTIŞMA ..67

7. KAYNAKLAR ...73

8. ÖZGEÇMİŞ ..88
KISALTMALAR LİSTESİ

MMC : Mitomycin C
vWF : von Willebrand faktör
PDGF : Trombosit kaynaklı büyüme faktörü
TGF-α : Transforming growth faktör alfa
HB-EGF : Heparin bağlayan epidermal büyüme faktörü
TGF : Transforming growth faktör beta
PF4 : Trombosit faktör 4
LTB-4 : Lökotrien B-4
PGE2 : Prostaglandin E2
PAF : Trombosit aktivatör faktörü
EGF : Epidermal büyüme faktörü
TNF-α : Tümör nekroz faktör alfa
PGE1 : Prostaglandin E1
PGI2 : Prostasiklin 2
LTC-4 : Lökotrien C-4
LTD-4 : Lökotrien D-4
BLTR : Lökotrien B-4 reseptörü
MCP-1 : Monosit kemoatraktan protein-1
MCP-5 : Monosit kemoatraktan protein-5
MIP-1α : Makrofaj inflamatuar protein 1 α
MIP-1β : Makrofaj inflamatuar protein 1 β
RANTES : Regulated upon activation normal T-cell- expressed and secreted
SDF-1 : Stromal hücre kaynaklı faktör-1
IP-10 : İnterferon-indükleyici protein-10
MIP-2 : Makrofaj inflamatuar protein-2
Gro-α : Growth-related onkogen α
IL-3 : İnterlökin-3
IL-4 : İnterlökin-4
GM-CSF : Granülosit makrofaj-cell sitümülated faktör
IL-10 : İnterlökin-10
IL-13 : İnterlökin-13
IFNγ : İnterferon γ
Th 2 : T helper-2
IL-8 : İnterlökin-8
HA : Hyaluronik asit
ECM : Ekstrasellüler matriks
MMP : Matriks metalloproteinaz
TIMP : Metalloproteinazların doku inhibitörleri
VEGF : Vasküler epidermal büyüme faktörü
FGF-1 : Fibroblast büyüme faktörü-1
IGF-1 : İnsülin benzeri büyüme faktörü-1
TPA : Doku plazminojen aktivatörü
UPA : Ürokinaz plazminojen aktivatörü
PAIs : Plazminojen aktivatör inhibitörleri
FGF-2 : Fibroblast büyüme faktörü-2
PA : Plazminojen aktivatörü
<table>
<thead>
<tr>
<th>İlişkili</th>
<th>Açıklama</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAI-1</td>
<td>Plazminojen aktivatör inhibitörü-1</td>
</tr>
<tr>
<td>KGF</td>
<td>Keratinosit büyüme faktörü</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Makrofaj cell stimulating faktör</td>
</tr>
<tr>
<td>INF-α</td>
<td>İnterferon -α</td>
</tr>
<tr>
<td>PDGF-α</td>
<td>Trombosit kaynağı büyüme faktörü-α</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>Transforming büyüme faktörü beta1</td>
</tr>
<tr>
<td>TGF-β2</td>
<td>Transforming büyüme faktörü beta2</td>
</tr>
<tr>
<td>TGF-β3</td>
<td>Transforming growth faktör beta3</td>
</tr>
<tr>
<td>NK</td>
<td>Natural killer</td>
</tr>
<tr>
<td>Th1</td>
<td>T helper 1</td>
</tr>
<tr>
<td>Th2</td>
<td>T helper 2</td>
</tr>
<tr>
<td>AIIt</td>
<td>Anexin II heterotetrameri(plazminojen reseptörü)</td>
</tr>
</tbody>
</table>
TABLO LİSTESİ

Tablo-1: Yapışıklık oluşumundaki cerrahi teknikler ... 33

Tablo-2: Yapışıklık oluşum aşamalarına etkili ilaçlar ... 36

Tablo-3: Yapışıklık oluşumunda kullanılması gereken katı ve sıvı bariyerler............................. 39

Tablo-4: Yapışıklık derecelendirilmesi .. 57

Tablo-5: Yapışıklık derecelerinin gruplara göre dağılımı .. 59

Tablo-6: Grupların yapışıklık dereceleri arasındaki farkların istatiksel olarak değerlendirilmesi .. 60
ŞEKİL LİSTESİ

Şekil-1: Periton yüzeyinin yeniden yapılandırılması .. 12

Şekil-2: Dokular arası yapışıklık oluşumu ... 14

Şekil-3: Peritoneal hasarın erken dönemindeki olayların şematik gösterilmesi 16

Şekil-4: Peritoneal yara iyileşmesi ve/veya yapışıklık gelişimi ile sonuçlanan anjiyogenezizi düzenleyen sitokin, kemokin ve büyüme faktörlerinin şematik gösterilmesi ... 17

Şekil-5: Peritoneal yara iyileşmesi ve/veya adezyon gelişimi ile sonuçlanan fibrinolizizi düzenleyen sitokinler, büyüme faktörleri, proteazlar ve yapışıklık moleküllerinin şematik gösterilmesi ... 22

Şekil-6: Peritoneal yara iyileşmesi ve/veya adezyon gelişimi ile sonuçlanan sitokinler, kemokinler ve yapışıklık molekülleri tarafından regüle edilen fibrinolitik sistem ve matriks metalloproteinazların şematik gösterilmesi ... 28

Şekil-7: Büyüme faktörleri, sitokinler, kemokinler, eikosanoidler, proteazlar ve yapışıklık molekülleri tarafından düzenlenen fibroblast proliferasyonu ve migrasyonunun artması sonucunda oluşan yapışıklık gelişiminin şematik gösterilmesi ... 30

Şekil 8- Vasküler endotelyal growth faktör(VEGF) ve reseptörleri (VEGFR);

VEGFR-1 ve VEGFR-2 (damar) ve VEGFR-3 (lenfatik) gösterilmesi 51

Şekil -9 : Bevacizumab’ın etki mekanizması .. 53

Şekil-10: Yapışıklık derecesinin ortalama değerlerinin gruplara göre dağılımı 60

Şekil-11: Yapışıklıklık derecesi 0 olan bir ratın görünümü ... 61

Şekil-12: Yapışıklıklık derecesi 1 olan iki ratın görünümü(A,B) .. 62
Şekil-13: Yapışlık derecesi 2 olan bir ratın görünümü .. 63

Şekil-14: Yapışlık derecesi 3 olan bir ratın görünümü .. 63

Şekil 15: Yapışlık dokusunda damarsal yapılar ve VEGF reseptör düzeyleri 64

Şekil-16: Bevacizumab uygulanan ratlardaki yapışlık dokusunun

immunohisto- kimyasal inceleme sonrası görünümü ... 64
I. ÖZET

Ağırlıklar 180-220 gr arasında, Wistar-Albino cinsi 30 adet dişi rat 3 eşit gruba bölündü. Ratların çekum duvarında ve sağ alt kadranda batın ön duvarındaki peritonda abrazyon oluşturulduktan sonra; Grup 1 kontrol, Grup 2’ye %0.9NaCl, Grup3’e Bevacizumab(VEGF antikoru), intraperitoneal olarak uygulandı. Operasyondan 7 gün sonra ratların batınları açılarak yapışıklıklar ciddiyetine göre derecelendirildi. Daha sonra yapışıklık gelişen yüzeyler ve yapışıklıklar histopatolojik olarak incelenebiliyor VEGF reseptör düzeyi immunokimyasal boyama yapıldıktan sonra subjektif olarak değerlendirme yapildı.

Yapışıklık gelişimi skor açısından kontrol grubu ile bevacizumab verilen grup karşılaştırıldığında istatistiksel olarak anlamlı farklılık bulundu (p<0.001). Bevacizumab’ın adezyon formasyonunu ve VEGF reseptör düzeyini anlamlı olarak azalttığı gösterildi.

Sonuç olarak Bevacizumab kullanımı laparotomize ratlarda yapışıklık gelişimini azaltmaktadır.

Anahtar kelimeler: Yapışıklık, Bevacizumab, Anti-VEGF
2. ABSTRACT

THE EFFECT OF ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR ON THE DEVELOPMENT OF ADHESION FORMATION IN LAPAROMIZED RATS

Intra-abdominal adhesion formation following laparotomy is a cause of significant morbidity, resulting infertility and pain. The understanding of pathogenesis of adhesion formation especially at the cellular and molecular level can help develop further to more effective treatments for prevention of adhesion formation. Angiogenesis plays an important role in wound healing and tissue remodeling. Angiogenesis appears to play an important role in the development of intraabdominal adhesions after operative tissue injury, because the extent of early neovascularization correlates with adhesion formation. This study’s aim is to determine that Bevacizumab, anti-angiogenic and recombinant monoclonal antibody, which specific target of Vascular Endothelial Growth Factor (VEGF), effects at the adhesion formation.

Wistar-Albino 30 female rats, weight range between 180-220 gr, divided into 3 groups. Following abrasion formation in the rats caecum wall and in the peritoneal surface at the localization of right lower quadrant of anterior abdominal wall; Group 1 only performed abrasion (as control) and in Group 2 performed abrasion + % 0.9 NaCl serum, in Group 3 performed abrasion + bevacizumab were administered intraperitoneally. On postoperative 7th day, re-laparotomy was performed and the number of the rats with adhesions was recorded and severity of adhesions was graded. After adhesions surfaces and fibrin band excised for immunohistochemical staining which are identify VEGF receptor, these receptor level assessed subjective.

There were statistically significant differences between control group and Bevacizumab group according to adhesion formation scala (p<0.001). In group of Bevacizumab has been determine that adhesion formation and VEGF receptor level was significantly decreased.

Bevacizumab decreases adhesion formation following laparotomy in rats via blockage of VEGF receptors

Keywords: Adhesion, Bevacizumab, Anti-VEGF
3. GİRİŞ

Peritoneal yapı setIntervaller peritoneal boşluk içerisinde yüzeyler arasında oluşan patolojik fibrotik bandlar olarak tanımlanmaktadır (1). Yapı TimeIntervallar sıklıkla cerrahi bir müdahaleye bağlı olmakla birlikte peritonit, endometriozis, pelvik inflamatuar hastalık, uzun süreli peritoneal dializ, kimyasal peritonitler, radyoterapi ve kanser durumlarında da gözlenmektedir (2,3).

Son zamanlardaki hem cerrahi tekniğe gelişmelerle hem de yapı TimeInterval gelişimini önlemek için alınan önlemlere rağmen bugün hala periton içi yapı TimeInterval önemli bir problem olarak günümüzde de devam etmektedir. Son yapılan çalışmalararda; daha önce cerrahi müdahale geçiren hastaların % 33’si postoperatif yapıTimeIntervallarla ilişkili olarak ikinci kez hastaneye tedavi amacıyla yatmaktadır (3). Postmortem olarak 298 oltuda yapı TimeInterval bir çalışmada, daha önce karın içi tek cerrahi girişim yapı TimeInterval olguların %67’inde, birden fazla operasyon geçmiş olanların ise %93’ünde yapı TimeIntervalğa rastlandıgı bildirilmiştir (4).

(6). Bununla birlikte; cerrahi süresince hastanın yapışıklıkları mevcutsa operasyon süresinin uzaması ile sonuçlanmaktadır ve operasyon esnasında kanama, üreter, bağırık, safra kesesi ve diğer intraabdominal organ yaralanmalarını içeren ameliyat sırasındaki komplikasyon riskinde artış olmaktadır.

Visseral ve/veya paryetal periton zarar gördüğüinde bir iltihabi reaksiyon tetiklenmektedir. Peritoneal boşluk içinde oluşan sıvı trombin tarafından fibrine dönüştürülen yüksek derecede fibrinojen ihtiva eden bu sıvı, tümörlerin yapışma özellikleri gösteren fibrin bütünlüğü bozulmuş serozal yüzeylerin üzerine yerleşir ve birbirine bitişik iki yüzey arasında köprü oluşturur. Bu fibrin tortusu oluşumdan sonra birkaç gün içinde çözülmez ise fibroblastlar gibi onarıcı hücreler fibrin matrixin içine yerleşerek; fibrin adezyonunu kollajenin varlığı ile fibröz adezyona dönüştürmektedir. Ve bu fibröz adezyonlar ilk etapta avasküler daha sonra vasküler tabaka oluşturacak şekilde olmaktadır. Ve bu geri dönüşümü olmayan adezyona yol açan bu süreç bir hafta içerisinde tamamlanmaktadır (7,8).

Halsted prensipleri olarak bilinen; dikkatli cerrahi tekniğin, dokuların cerrahi esnasında az travmatize edilmesinin, iyi yapılmış olan kanama kontrolünün ameliyat sonrası yapışıklıkları önlemektediği rolü önemlidir (9). Yapılan deneysel ve klinik çalışmalarda bir çok ajanın karnın içi yapışıklık gelişimini kısmen önlediği ileri sürülmüştür. Bu ajanlar; nonsteroid antiinflamatuar ajanlar-(NSAID), interleükin-10, kortikosteroidler, antihistaminikler, ringer lactat, dextran, progesteron/östrojen, antikoagulan, hiyaluranik asit, fibrinolitik ajanlar, antibiyotikler ve peritoneal bariyerlerdir (10). Bu ajanların bazılarının yapışıklıkların niteliğini ve sayısını azalttıkları gösterilmiştir. Bununla birlikte; hiçbirinin etkinliğini herkesce kabul görmemiş olmakla birlikte aktivasyon mekanizmaları da tam olarak anlaşılmamıştır(10,5).

Bevacizumab, anti-anjiogenik ve anti-tümör etkinliği olan rekombinant monoklonal VEGF antikorudur. Faz I çalışmalarda kemoterapi ile birlikte kullanıldığında serum VEGF seviyelerini ölçülemez duruma kadar düşürek ve farklı tümörlerde büyüyeyi inhibe ettiği bulunmuştur (11). VEGF’in endotel hücreleri üzerinde bulunan transmembran tirozin kinaz reseptörlerine bağlanmasını ile tetiklenen sinyal yolu birçok seviyede farklı açılardan inhibe edilerek VEGF’in etkinliği önlenebilmektedir (12,13).

Yapılan çalışmalar; genellikle Anti-VEGF’nin kanser dokusu üzerine ve anjiogenezise olan etkileri üzerine yoğunlaşılmış ancak postoperatif adezyonlar üzerine etkisi yeteri kadar araştırılmamıştır.

Bu çalışma ile; anti-anjiogenik ve anti-tümör etkinliği olan spesifik olarak VEGF’i hedef alan rekombinant monoklonal VEGF antikorunun laparatomize ratlarda postoperatif adezyon oluşması üzerinde etkisi ve adezyon dokusunda VEGF reseptör düzeyi belirlenmesi amaçlanmıştır.
3.1 Periton

Perikardial, peritoneal ve plevral boşlukların seröz membranı benzer embryyojenik özellik göstermekle birlikte periton tek kat halinde mezotelyal hücrelerin örtüğü, vasküler yapıdan zengin, kollajen, lenfosit, fibroblast, makrofaj, plazma hücreleri ve mast hücreleri içeren bağ doku tabakasından oluşur (3). Bu mezotelyal hücreler bazal membrana tutunmaktadırlar. Submezotelyal tabaka; farklı tip kollajenlerin, glikoproteinlerin (laminin ve fibronektin), glikozaminoglikanların oluşturduğu extrasellüür matristen oluşmaktadır. Vasküler ve lenfatik tabaka subserozal alanda bulunmaktadır. Difüzyon ve sıvının emilimi mezotelyum ve submezotelyal stromadan olmaktadır.

Mezotelyal hücreler bazal membrana gevşek olarak yapıştırıp ve önemsiz bir travmada ayrılabilmektedirler(14). Bunlar mikrovillilere sahip olup, ayrıca sitoplazmalarının çoğunu doldurun geniş ve belirgin nükleusleri vardır. Mezotelyal hücreler uyarıldığı zaman IL-2, 6 ve 8 (15-18), tümör nekrozit faktör- (TNF–) (16), ve Transforming growth faktör- (TGF- (17) salgılanır. Mezotelyal hücreler, doku plazmojen aktivatörleri ve plazmojen aktivatör inhibitörü salgulayarak fibrinolitik olaya katkıda bulunmaktadır. İntraselüler yapışıklık molekülü-1 (ICAM-1) mezotelyal hücreler uyarıldığında salgılanmaktadır(19). Ayrıca hyalüronik asit ve prostoglandinler mezotelyal hücreler tarafından sentez edilmektedir.

3.2 Peritoneal Sıvı

Periton içerdiği peritoneal sıvı ile devamlı temas halindedir. Bu sıvı gastrointestinal sistem, mesanenin normal fonksiyonunu kolaylaştırmakla birlikte kadın genital organlarında özellikle fallop tüplerinin motilitesinde ve oositlerin geri
Alımında önemli rol oynamaktadır. Erişkin insanlarda peritonun ortalama yüzeyi 1,8 m² dir. Inflamatuar olaylar sonucunda (diffuz peritonit), periton kalınlığında 1 mm’lik bir artış yaklaşık 18 litre sıvının birikimi ile sonuçlanır (20,21). Peritonun yaklaşık 1 m² lik kısmı su, elektrolitler ve makromoleküllere karşı pasif, yarı geçirgen bir zar gibi davranır. Moleküllerin peritoneal boşluga girişi çıkışları transudasyon, eksudasyon ve kolaylaştırılmış transport ile sağlanır. Normal şartlarda periton içerisinde 50 ml’den az, protein içeriği ve yoğunluğu düşük olan, mm³ de 3000’nin altında hücre içeren, peritoneal kavitede dinamik olarak dolaşan sıvı bulunur (20,22). Peritoneal iyileşmede peritoneal sıvıdaki sellüler moleküllerin aktivitesi önemli rol oynamaktadır. Peritoneal sıvı geniş sayıda lökosit az sayıda makrofajlar, eozinofil ve bazofil içermektedir. Bununla birlikte, bu hücrelerin peritoneal sıvıdaki durumu peritonun durumuna bağlıdır.

İzooosmolar sıvılar 30-40 ml/ saat hızla peritoneal boşluktan emilir. Bu emilim hızı gravitasyon (postür), peritoneal sıvının tonisitesi gibi faktörler tarafından etkilenir (23). Kristalloid ve kolloid solüsyonlarının postoperatif adezyon önlenmesinde kullanılmalardan bahsedilirken bu solüyonların esasen normal mezoteliyal iyileşme ve adezyon oluşumu için gerekli olan süreden çok önce karın içinden absorbe olduklarını ve bu teorik temelden hareketle önleyici etkilerinin olmadığı belirlenmiştir. Kristalloid ve kolloid solüsyonlar; ringer laktat, izotonik solüson, fosfat tamponlu solüsonlar, çeşitli konsantrasyonlarda dekstran bu amaçla çok sayıda klinik ve deneysel çalışmalarında kullanılmış ve farklı sonuçlar rapor edilmiştir. Bu solüsonların kullanılmasının teorik çıkış noktası peritoneal ve serozal yüzeylerin iyileşme sürecinde birbirleriyle olan temaslarının önleniği bir ortamın oluşturulmasıdır (24).
3.3 Yapı硫酸kıkların Önemi

Karin içi yapı硫酸kıklık gelişimi ve yeniden modellenmesi cerrahi sonrasında morbiditenin önemli bir sebebidir (32). Son zamanlarda yapılan çalışmalarada, bu olgu daha önce cerrahi müdahale geçiren hastaların yaklaşık %33’ünün cerrahi ile ilişıkili komplikasyonlardan dolayı hastaneye tekrar yatmış ve sonra komplikasyonlardan dolayı hastaneye tekrar yatmış %33’ünün cerrahi ile ilişıkli komplikasyonlardan dolayı hastaneye tekrar yatmıştır. Doğumsal veya inflamatuar yapı硫酸kıklar barsak tıkanıklığı ile sonuçlanmaktadır.

Abdominopelvik cerrahi sonrasında oluşan yapı硫酸kıklar, daha sonra neden oldukları barsak tıkanıklıkları, infertilite, kronik pelvik ağrı ve daha sonraki cerrahi girişimleri güçlendirmesi nedeni ile günümüzde genel cerrahların ve jinekologların önde gelen sorunlarındandır. En mükemmel cerrahi teknikler bile, tek başına yapı硫酸kıkları önleyememektedir. (10).

 Yapı硫酸kıklar, edinsel ve doğumsal olarak sınıflandırılabilir. Edinsel yapı硫酸kıklar da inflamatuar ve ameliyata sekonder diye sınıflandırılabilir (7).

Menzies ve Ellis, en az bir karın ameliyatı geçirenlerin %93’ünde yapı硫酸kıklık saptarken ameliyat geçirmemiştir olguların %10.4’ünde yapı硫酸klık (%9.5’i inflamatuar, %1’i doğumsal) saptamlılarlar (7). İnflamasyona bağlı yapı硫酸kıklarının çoğunluğu akut apandisit (%42) ve divertikülite (%14.5) bağlıyken, diğer nedenler arasında ise pelvik inflamasyon, kolesistit ve crohn hastağığı göz çarpmaktadır (25).

Ameliyat sonrası yapı硫酸kıklar, barsak tıkanıklıklarının % 40’ı oluşturmakla birlikte bu yapı硫酸kıkların %60-70 ince bağırsakları içermektedir (26). Büyük olgu serilerinin analizlerinde tüm barsak tıkanıklıklarının üçte birinden ve tüm ince barsak tıkanıklıklarının üçte ikinde karın içi yapı硫酸kıklarının sorumlu olduğu görülmektedir (27,28). Kolonda gelişen yapı硫酸kıklar daha azdır bunun en önemli nedeni kolon mezenterinin kısa olmasıdır. Bu nedenle kolon lümeni kolayca açlanmaz, sonuçta
kolondaki yapışıklığa bağlı gelişen tıkanıklik, ince barsakta görülenin %2-10'u kadardır (29).

Cerrahi esnasında yapışıklığın varlığı uzun operasyon süresiyle sonuçlanmakta ve bağırısa, mesane, üreter yaralanması ve kanama gibi komplikasyon riskini de beraberinde taşımaktadır.

Tüm laparotomilerin %1’inde 1 yıl içinde, %3’ünde cerrahiden sonraki herhangi bir dönemde yapışıklığa bağlı tıkanıklik gelişir (28-30). Tüm ince barsak tıkanmalarının %60-70’i karın içi yapışıklıklara bağlıdır (30). Yapışıklıklara bağlı tıkanıklıklar cerrahi tedavisi (adezyolizis) sonrası %11-21 olguda nüks gelişmektedir (31). Relaparotomi yapılan hastaların %21’inde ameliyat sırasında yapışıklıklara bağlı barsak delinmesi oluşur (32). Karın içi yapışıklıklara bağlı tıkanıklıkların cerrahi tedavi mortalitesi yayınlanmış iki seride %6-8 ve %13 olarak bildirilmiştir (33,34).

yapışıklıkların yoğunluğu veya lokalizasyonları karşılaştırıldığında anlamlı bir fark bulunamamıştır (8).

Jinekolojik operasyonun boyutu veya cerrahi sebebinin kanser olması, ameliyat sonrası barsak tıkanıklığı ile doğru orantı gösterir. Benign hastalık nedeni ile jinekolojik ameliyat geçiren ancak histerektomi yapılmayan hastalarda, yapışıklığa bağlı barsak tıkanıklığı insidansı yaklaşık %0.3 iken, bu oran histerektomi yapılanlarda ortalama 10 kat artarak %2-3’e çıkmaktadır. Postoperatif barsak tıkanıklığı en sık over kanserı nedeni ile sitoredüktif cerrahi uygulanan hastalarda meydana gelen yapışıklıklar sonucudur ve bu bir çalışmada %22 olarak bildirilmiştir. Radikal histerektomi sonrası radyasyon tedavisi alan hastalarda da barsak tıkanıklığı oranı %20’ye çıkmaktadır (40).

Jinekolojik cerrahi sonucu ortaya çıkan yapışıklıklar en sık omentum ile ince barsak distali arasında gelişir. Bu nedenle bu tür jinekolojik ameliyatlardan sonra ince barsak tıkanıklıklarının en sık görüleceği yer ileumdur (40).

 Ayrıca kanser tedavisinde kullanılan ve intraperitoneal uygulanan terapötik ajanların periton boşluğununda homojen yayılımını engelleyerek etkilerini kısıtlayabilirler. Daha sonra yapılacak operasyonlara güçlü teşkil edebilir ve organ delinmesi riskini arttrabilirler (7-8).

3.4 Normal Peritoneal İyileşme

Peritoneal iyileşmenin hızlı peritoneal yaranın büyüklüğü ile ilişkisizdir. Remezoteliyalizasyon tüm peritoneal yara boyunca kendiliğinden olarak başlar, 3 gün içerisinde bağ doku hücreleri yarayı sarar, 5. günden sonra submezoteliyal kök hücrelerinden köken alan mezoteliyal hücreler peritoneal yarayı kapamış olur (14). Periton iyileşme olayı dört basamak halinde özetlenebilir.
I- Peritoneal zedelenme; özellikle, sekresyonu artan prostaglandin E2 ve histamin aracılığıyla damar permeabilitesinde artış olur

II- Damar permeabilitesinin artışına bağlı olarak peritoneal kavite içerisinde serosanginöz, proteininden zengin bir eksüda birikir ve 3 saat içerisinde pıhtılaşır. Oluşan fibrinöz yapı zedelenme bölgesine yapışarak inflamatuar hücrelerce infiltre edilir.

IV- Peritoneal iyileşme zedelenmeden sonra 2-3 gün içerisinde başlar, mezotelyal hücreler 48 saat içerisinde zedelenme bölgesinde belirir ve takip eden 5 gün içerisinde defekt tek tabaka mezotelyal hücre ile örtülmuş olur. Iyileşme olgusu tüm defekt boyunca çok odaklı olarak oluşur (41-49).

mezotelyal hücrelerin bu alana göç etmesi periton yeniden adacıklar şeklinde oluşturulmaktadır (şekil 1-C).

Fibrinolitik sisteminde kontrolünde 5-7 günlük epitelizasyon sonrasında hasarlı kısmın onarılmaktadır. Kollajenlerin ve doku proteinlerinin yeniden biçimlendirilmesi birkaç ay sürmektedir (şekil 1-D) (50).

Şekil 1: Periton yüzeyinin yeniden yapılandırılması(50)
3.5 Yapısalıkların Patogenezi ve Moleküler Olaylar

Peritoneal yaralanma, aynı zamanda tromboplastin (doku faktörü) salınmasına neden olarak fibrin oluşması ile sonuçlanan pıhtılama olayını aktive eder. Eğer fibrin yıkımı yeterli olmaz ise bu fibrin, adezyon oluşumunu için ortam sağlar. Fibrin üretimi fazla ise peritoneal plazminin fibrin yıkma kapasitesi aşılması olacağınından fibröz ortam oluşur (41,43,44).

Peritoneal zedelenme durumunda kavitede kan var ise yapışıklık oluşumu, kandan sağlanan fazla miktardaki fibrinden dolayı uyarılır. Peritoneal zedelenme durumunda peritoneal boşlukta kanın heparinize edilmesinin yapışıklık oluşumunu engellediği bildirilmektedir (43). Anormal peritoneal iyileşme ve yapışıklık oluşumu, özellikle yetersiz fibrinolitik aktiviteyle giden, normal iyileşme sürecinin bir çeşididir. Tromboplastin kaynaklı fibrin üretimi ve PAA inhibitör aktivitesi fazla olduğunda komplett fibrinolizis oluşamaz. Her iki madde de özellikle önemli travma ve infilamasyon varlığında artar. (41,44). Fibrinolitik aktivitenin inhibitöru sonucunda lökosit ve peritoneal kaynaklı enzimler fibrinöz eksudatı çözme yetersiz kalırsa fibrinöz yapışıklıklar ilerleyerek fibröz ağ örgütüne dönüşür. Fibrositlerin göğüs ve
kollajen birikimi ile bu fibrin örgüsü büyüyerek kapillerlerin regresyonu ve fibroblastların alanı doldurularak fibröz yapılaşmaları dönüşür ve bu yapılaşmalar kalıcıdır (45,46). Doku iskemisi, devaskularizasyon, nekroz, peritoneal defektlerin greftlenmesi ve sütüre edilmesi, cerrahi işlemin bizzat kendisi fibrinolitik aktiviteyi azaltan faktörler olarak sayılabilirler (41,47). Peritoneal boşluk içerisinde kanın varlığı ve serozal kuruluşunda fibrinolitik aktiviteyi azalttıgı bildirilmiştir (43,48). Doku hasarına cevap olarak PAA düzeyi başlangıçta fibrinöz yapı da olan adezyonların rezorbe veya kalıcı olacağı belirlemektedir (44).

Cerrahi travma sonrasında da iskemik durumların oluşmasıyla fibrinolitik aktivitenin baskılanmasıyla kalıcı fibrin bandları oluşabilmektedir (Şekil 2).

Şekil 2: Dokular arası yapışıklık oluşumu (50)
3.5.1 Doku Travması ve Fibrin Bandların Gelişimi

Doku travması; inflamatuar cevap, hücre büyümesi ve farklılaşması, damar gelişimi (anjiyogenez), hücre dışı ortam döngüsü, dokunun yeniden oluşumu ve apoptozisi (kontrollü hücre ölümünü) kapsayan dinamik olayların üst üstte eklenmesi, diğer dokularda olduğu gibi peritoneal doku hasarı iyileşmesine de öncülük eder. Kabul gören görüş; peritoneal yaralanma ya yara tabanında yetersiz damar oluşumu ya da yetersiz kan akınına bağlı olduğu (14). Peritoneal inflamasyon, iskemi, infeksiyon ve cerrahi sebeple oluşan doku travması bu hücreleri korunmasız bırakarak hasar verebilir veya öldürebilir (50). Yapışıklık bandları sıkılıkla cerrahi sonrasında hasarlanmış periton yüzeyleri arasında gelişmektedir.

Peritoneal yara tamirinin birçok fazı esnasında ve dermal yara iyileşmesini andıran bu aktiviteler özgül mekanizmalar tarafından düzenlenirken; iki temel farklılık
göz önüne alınmalıdır. İlk olarak dermal yara iyileşmesi için öneilik değil yüzeyeldir, dolayısıyla yara iyileşme hızı lezyonun boyutuna bağlıdır. Diğer yandan; peritoneal yaraların progenitör hücrelerin altında yattığı mezotelyal hücreler yaranın kenarından merkezine doğru hareketi ve mezotelyal hücrelerin yaraya ekilmesi sonucu diğer kısımlarda ayrılmaya meydana geldiği ve başkalanım yoluya iyileştiği düşünülür (52). İkinci olarak peritoneal yaralar; periton sıvısındaki infamatuar, immün ve mezotelyal hücreler tarafından ve yaradaki çeşitli hücreler tarafından sentezlenen maddelere devamlı olarak maruz kalır. Bundan dolayı bu molekülünin lokal salınımı ile başlatılan direkt ve indirekt otokrin/parakrin feedback’in düzenlenmesi; peritoneal iyileşme ve yapışıklık gelişiminin önemli bir bileşenidir (Şekil 3) (51).

Şekil–3: Peritoneal hasarın erken dönemindeki olayların şematik gösterilmesi (51)
3.5.2 Yapışıklık Gelişiminde İnflamatuar Araçların Rolü

Yapılan çalışmalar, defektli alanın iyileşmesinde, infeksiyona cevapta veya hücresel/dokusal iyileşmede görev alan moleküllerin tanımlanmasında yardımcı olmuştur. Peritoneal boşluğu göç eden immün ve inflamatuar hücreler, viseral / paryetal peritondaki mezotelyal hücreler ve submezotelyal dokuya göç eden fibroblastlarla bunların salgıladıkları ürünler; bu olaylardaki peritoneal cevapta anahtar düzenleyicilerdir (51-53). Bu moleküllerin tek ve birleşik hareketleri; hem inflamatuar cevap, peritoneal yara iyileşmesi, hem de yapışıklık gelişimini başlatır, artırır ve kontrol eder (Şekil 4) (51).

Şekil–4: Peritoneal yara iyileşmesi ve/veya yapışıklık gelişimi ile sonuçlanan anjiyogenezisi düzenleyen sitokin, kemokin ve büyüme faktörlerinin şematik gösterilmesi (51)
plazmin tarafından hazırlanan fibrin yıkım ürünleri; trombosit faktör 4 (PF₄),
eikozanoidler (LTB₄ ve PGE₂) ve trombosit aktivatör faktör’ü (PAF) içerir (61).
İnflamatuar hücrelerin yaraya toplanması, aynı zamanda fibrin, fibronektin ve
vitronektin gibi fibrin pıhtısında bulunan moleküller ve bu moleküllerı tanıyan
integrinler ile kolaylaştırılır (56,57). Aktive olup makrofajlara dönüşen infiltratif
monositler de; büyüme faktörleri, sitokinler, kemokinler, eikozanoidler ve proteazların
major kaynağıdır (59,60).

Ek olarak peritoneal makrofajlar, nötrofiller, T hücreleri, mast hücreleri ve
mezotelyal hücreler bu moleküllerin çoğunun kaynağıdır. Yani bu moleküller tek tek
veya aralarındaki hareketleriyle peritoneal yarayı düzenler ve sonunda doku tamiriyle
sonuçlanan faza ilerlemesini sağlarlar. Yara içine salınan sitokin ve kemokinlerin çoğu;
koagülasyon olayında ve inflamatuar cevapta gerekli faktörler olan eikozanoidler ve
proteazların üretimini düzenlerler (57,60).

TGF-β, Epidermal Büyüme Faktörü (EGF) ve TNF-α’nın, yapışıklık
gelişiminde anahtar bir hücre tipi olan fibroblastlar üzerindeki uyarıcı etkileri
siklooksijenaz inhibitörleriyle artırılır, PGE₂, PGE₁ ve PGI₂ varlığında azalır (59). Ek
olarak eikozanoidler çeşitli hücre tiplerinde sitokin ve büyüme faktörlerinin hücre içi
medyatörleri gibi görev yaparlar. Eikozanoid üretimindeki ve reseptör sayısındaki artış,
yapışıklık gelişimindeki artışla ilişkilidir ve İbuprofen, İndometazin ve Meklofenamat
gibi NSAID’ların kullanımlıyla inhibe olmaları da yapışıklık gelişimini azalttıklarının
ispatıdır. Bunların yanında insandaki etkisini göstermek için yapılan sınırlı çalışmalar
karşılık sonuçlara sahiptir. Periton diyalizi nedeniyle peritoneal inflamasyonu olan
hastalardan elde edilen kaşıntlar ve in-vitro çalışmaların sonuçları, infeksiyon veya
cerrahi travma sonrası, peritoneal boşluktta eikozanoid yapımını baskılayan ajanların
kullanımını, yapısalıların önlenmesi amacıyla desteklemektedir (62). Bununla birlikte sürekli periton diyalizi alan hastalardaki peritonit sırasında intraperitoneal Indometazin kullanımının, periton geçirgenliğini bazı makromoleküllere karşı azalttığı, ancak bu makromoleküllerin diğer fonksiyonel peritoneal göstergeleri değiştirmediği bildirilmiştir (63).

Nötrofil, makrofaj ve eozinofillere etkili kemoatraktanlar olan lökotrienlerin çeşitli inflamatuar süreçlerin patogeneziyle ilişkisi olduğu gösterilmiştir. Cerrahi kaynaklı yaralar, iyileşme ve peritoneal yapısalı gelişimi sırasında, prostaglandin, tromboksan, 5-siklooksijenaz, LTB-4, LTC-4 ve LTD-4’un salınımında artış görülmektedir (62). Diğer kemoatraktan reseptörlerle birlikte lökositlerin ve kısmen eozinofillerin infilme peritona toplanması ve/veya birikiminde LTB-4 ve BLTR (LTB-4 reseptörü)’nin rol oynadığı açıktır (64).

3.5.2.1 Kemokinlerin Rolü

Kemokinler lökositlere karşı etkili kemoatraktan aktivitesi olan ve inflamasyonu, anjiyogenezi, hematopoezi ve infeksiyona konak cevabı düzenleyen küçük polipeptitlerdir (65,66). Sıklıkla rastlanan kemokinler; monosit kemoatraktan proteinler (MCP), makrofaj inflamatuar proteinler (MIP), eotaksin, “Regulated upon Activation Normal T-cell- Expressed and Secreted” (RANTES), stromal hücre kaynağı faktör-1 (SDF-1), IFN-indükleyici protein-10(IP-10) ve Growth-Related Onkogen-α (Gro-α)’yı içerir (56,59).

Peritonal biyolojideki özellikle yapısalı gelişimin öncülüğünü eden inflamatuar cevapla ilgili in-vitro ve in-vivo çalışmalar kemokinlerin kritik rolünü işaret etmektedir (67). İnflamasyon bölgesindeki endotel hücre retraksiyonuna yanıt olarak salınan
plazma kaynaklı fibrinojenin; peritoneal makrofaj salınımını ve MIP-1α, MIP-1β, MIP-2 ve MCP-1 dahil olmak üzere bir çok kemokinin salınımını başlattığı gösterilmiştir (68). Peritoneal hasarın başlatılmasını takiben LTB-4 üretilmesi ile kemokinlerin hareketlenmesi gerçekleşmekte ve bu kemokinler nötrofillerin hasar bölgesine göçüne aracı olmaktadır (69).

IL-3, IL-4, GM-CSF, IL-10 ve IL-13 mezotelyal hücrelerce salınan ve periton sıvısında bulunan sitokinlerdir, ayrıca konak savunma reaksiyonunun kronik evresini düzenleyen kemokinlerin makrofajlardan salınımını da sağlarlar. Bunlara ek olarak, MCP-1 ve MIP-1α salınımı, IL-3 ve GM-CSF ile indüklenirken, IL-4 ve IFNγ ile inhibe edilir (70,71).

IL-13 potent anti-inflamatuar aktivitesi olan bir T-helper (Th2) sitokinidir ve koruyucu etkisini inflamatuar sitokin ve kemokinleri baskılama yoluyla yapmaktadır(72). Antiinflamatuar özelliklere sahip bir başka sitokin de IL-10’dur ve bu sitokin; MCP-1, MCP-5, MIP-1α, MIP-1β, MIP-2, IP-10, RANTES ve IFNγ’nın salınımını etkili bir biçimde inhibe etmektedir (73).

İnsan peritoneal fibroblastlar MCP-1 ve IL-8’i salar ve bunların salınımı, IL-1β ve TNF-α gibi proinflamatuar sitokinlerle ve peritoneal makrofaj toplanmasınıyla ilişkilidir (74). IL-1 β, TNF- α, IFN-γ veya bunların kombinasyonu MCP-1, RANTES, IP-10 ve GROα’nın salınımını arttırılmaktadır (75). Bu gözlemler inflamatuar ve immün yanıtta sitokin ve kemokinlerin aralarındaki karmaşık hareketlerin önemini göstermektedir ve bunların peritoneal çevredeki hareketleri peritoneal inflamasyona, iyileşmeye ve yapışıklık gelişimine yol açabilir (71).

Hyaluronik asit (HA) ve onun deriveleri; membranlar, jeller ve solüsyonlar gibi biyolojik olarak indirgenebilir materyaller, yapışıklık gelişimini önlemek için yaygın
olarak kullanılır (76,77). Deneysel olarak üretilmiş HA parçacıklarının, insan mezotelyal hücrelerinde MCP-1 ve IL-8 salınımını artırdığı gösterilmiştir. Bundan dolayı, periton diyalizi uygulanan hastalarda peritoneal boşluğunda artmış HA seviyeleri ve biyolojik olarak indirgenebilir HA kaynaklı aletler, uzamış inflamasyon neden olan kemokinlerin lokal üretimini değiştiribilir (51). Ek olarak peritoneal inflamasyon esnasında nötrofiller elastaz üretirken peritoneal doku yaralanmasının olduğu bölgede makrofajlar da MCP-1 üretimi olur ve bu makrofajlar serin proteaz inhibitörü olan fenilmetilsulfonil floridle inhibe edilir (78). Bunlar gösteriyor ki; Ekstrasellüler matriks (ECM) indirgenmesine ek olarak proteazlar, peritoneal iyileşme ve yapışıklık gelişiminde zayıflamaya neden olan makrofajlarca üretilen kemokinlerin salınmasını uyarabilir. Azaltılmış nötrofil infiltrasyonuya başlayan inflamatuar reaksiyonun çözülmesi aynı zamanda tamir sürecinin anlaşıması için de gereklidür. Doku nötrofilleri, apopitotik hale geldikleri ve makrofajlarca fagosite edildikleri dokuda ve pihtı içinde tuzaklanırlar. Mezotelyal ve diğer yara çevresi hücreleri tarafından salınan GM-CSF, IL-1β, TNF-α ve IFN-γ gibi birkaç sitokin peritoneal sıvıda bulunur ve makrofajlarca nötrofil geri alınmasını kolaylaştırır (51). Peritoneal yara iyileşmesi ve/veya yapışıklık gelişimi ile sonuçlanan fibrinolizisi düzenleyen sitokinler, büyüme faktörleri, proteazlar şekilde de görüldüğü gibi önemli bir rol oynamaktadırlar.
Şekil-5: Peritoneal yara iyileşmesi ve/veya yapışıklık gelişimi ile sonuçlanan fibrinolizisi düzenleyen sitokinler, büyüme faktörleri, proteazlar ve yapışıklık moleküllerinin şematak gösterilmesi (51)

3.5.3 Peritoneal Doku Tamiri

Hasarlı paryetal peritonun tamiri yaralanmadan hemen sonra hızla başlar. Hızlı şekilde yeni doku yap karşıması; çeşitli büyüme faktörleri, sitokin ve kemokinler ve bunların özgül reseptörleri veya bağlayıcı proteinleri ile düzenlenmektedir. Bu sitokin ve büyüme faktörlerinin birçoğunun salınımı paryetal peritonda ve karın içi yapışıklıklarda gösterilmiştir. Bu molekülerden herhangi birinin yara tamiri ve skar dokusu gelişiminin sonuçlarını etkileyen normal fizyolojik veya patofizyolojik oluşumlara bağlı yara iyileşmesindeki lokal salınımlandır; bu da adı geçen maddelerin çeşitli peritoneal biyolojik aktivitelerdeki önemlerini göstermektedir. Ayrıca peritoneal mezotelyal hücreleri ve yapışıklık fibroblastlarını hücresel aktivitelerinde görev alan sitokin ve kemokinlerle ilgili bilgiler kısıtlıdır, bunların intraselüler biyolojik
aktivitelerini düzenleyen reseptör sinyal mekanizmaları hala tam olarak bilinmemektedir (51).

3.5.3.1 Büyüme Faktörlerinin Rolü

Peritoneal yara iyileşmesi ve yapışıklık oluşumu sırasında tanımlanan ilk büyüme faktörü EGF idi, takip eden diğer EGF ailesi üyelerinin belirlenmesinde ise TGF-α ve HB-EGF ve bunların genel reseptörü olan EGF reseptörü bulunur (79). EGF ile ilgili yapılan çalışmalar; paryetal periton ve yapışıklıklarda EGF salınımı ile çeşitli iyileşme hücreleri arasındaki ilişkilerin yaygın olduğu gösterilmiştir. Bu veri ile EGF ailesi; peritoneal iyileşmesini geniş orandaki aktiviteleri ile potansiyel olarak etkileyebilirler. Bu nedenle EGF; sinerjistik bir şekilde VEGF, IGF ve PDGF tarafından artırılan mezotel ve adezyon fibroblastları için mitojen bir faktör olarak rol oynar (51).

Aktive TGF-β integrinleri, ECM’i ve proteazları tipki fibrinolitik sistem, MMPs ve bunların inhibitörleri gibi düzenler (56,59). TGF-β, hücre tipine ve özgül mikroçevreye bağlı olarak birden çok biyolojik aktiviteye sahiptir. TGF-β hücre büyümesi ve proliferasyonu üzerinde hem uyarıcı hem de baskılayıcı etkiye sahiptir ve bunların mitojen aktivitesinin PDGF ve PDGF-α reseptörü gibi büyüme faktörlerinin uyarılmasına bağlı olarak direkt etki ettiği rapor edilmiştir (56). TGF-β reseptörleri ayrıca EGF reseptörünün üretimini arttırır, ayrıca EGF’nin indüklediği TGF-β1 gen ekspresyonuyla sinerjistik etki gösterir ancak TGF-β2 ile göstermez. Sonuç olarak TGF-β, adezyon fibroblastları ve mezotelyal hücreler gibi hücrelerde kendi salınımını artırmaktadır(56,80,81). TGF-β1’in salınımının artırığı birkaç hastalıklı pulmoner fibrozis, glomerülonefrit, karaciğer siroz ve deri skarlaşmasıdır(59). TGF-β1 geninin kaybı, degranüle trombositlerden TGF-β1 salınımı veya infiltratif makrofajlardan ve
fibroblastlardan sekresyonu doku tamirine başlangıcı için ne de devamı için kritik olmadığını ve de endojen TGF inflamasyonu ve kötü yara iyileşmesini artırdığını göstermektedir (82). Mezotelyal hücreler ve adezyon fibroblastlarıyla oluşan yapışıklıklar TGF-β salınımının ana yerleridir, TGF-β’nin yükselişmiş seviyeleri cerrahi yapışıklığı olan hastaların yapışık dokularında veya peritoneal sıvılarında gözlenmiştir.
TGF-β1 ve TGF-β3 paryetal peritonun serozasından, uterusandan, overlerden, omentumdan, ince ve kalın barsaklardan salının. Yapışıklığı olan vakalarda yapışıklık yeri, hasarsız peritona göre anlamlı olarak fazla TGF-β1 salınıma neden olur. Bu dokularda TGF-β salınımının farklılığının bilinmesiyle yüksek bazal TGF-β salınımı olan dokular diğer dokulara göre daha fazla yapışıklık gelişimine yakın olduğunu görürmektedir. (51).

3.5.3.2 Sitokinlerin Rolü

İnterlökinler, peritoneal yara iyileşmesinin ve yapışıklık gelişiminin başka bir grup anahtar düzenleyicileridir. IL-1’in proinflamatuar bir sitokin olduğu ve IL-1-α ve IL-1-β’nin yara iyileşmesinin erken dönemi sırasında salgulandığı düşünlülmektedir. Bu sitokinler mezotelyal hücreler ve fibroblastlar tarafından da salınmaktadır. Peritoneal sıvıda da tespit edilebilirler ve yara işleminin doku fibrozisine neden olan fazlarına etki ederler (52,53,80).

IL-2 aktive T-helper hücrelerce sentezlenir ve T, NK ve B hücreleri için mitojendir. Ek olarak IL-2; IFN-γ, IL-3, IL-4, IL-5 ve GM-CSF üretimini de uyarr. Mezotelyal hücrelerin IL-2, IL-3, IL-4, IL-5 salguladıkları gösterilmemiştir (83). Ancak bir insan mezotelyal hücre çizgisi bu sitokinleri salınımına neden olur ve bu sitokinler peritoneal sıvıda tespit edilmiştir (52,67).
IL-4: T hücreleri, mast hücreleri ve bazofillerce üretilir ve Th-1 hücrelerinin gelişimini baskılar. IL-4’ün bağ dokusu fibroblastlarını uyardığı, IL-6 üretimini sağladığı ve IL-1 ile IL-8 ve TNF-α salınımı inhibe ettiği gösterilmiştir. Ayrıca IL-4’ün yara iyileşmesinde anahtar bir sitokin olduğu düşünülmektedir (84).

IL-6 endotelyal hücre proliferasyonu ve VEGF salınını üzerinde uyarıcı etkiye sahiptir, peritonitte ve ameliyat sonrası peritoneal yaralanmayı takiben oluşan yapışıklık gelişiminde artış IL-6 salınımı gösterilmiştir (52,67).

Kemokin ailesine ait olan IL-8 nötrofillerin temel kemotaktik faktörüdür. Bu hücre yüzey endotelyal lökosit yapışıklık molekülleri ve intrasellüler yapışıklık molekülleri gibi yapışıklık molekülleri arttırmır ve bu yapışıklık molekülleri ise nötrofillerin endotelyal hücrelere yapışması ile bunların damar duvarına göçünü sağlar. IL-8 paryetal peritondan ve yapışıklık olan dokularda salınır, ayrıca mezotelyal hücrelerden salınım, IL-1 ve TNF-α tarafından düzenlenir (53,67).

IL-10: Th-2 hücreleri tarafından üretilir ve IL-10 salınımı yaralanma sonrası hızla doruk seviyeye ulaşır ve 24 saat içinde normal sınırlara döner, ancak belirli bir süre sonra tekrar yükseılır. IL-10’un; MCP-1, MIP-1-α, IL-1, IL-6 ve TNF-α’nın doku yaralanmasını takiben artışını inhibe ettiği gösterilmiştir (52). IL-10 peritoneal yara iyileşmesi süresince salınmaktadır, ayrıca yapışıklık gelişimi insidansını düşürmede etkili olduğu da gösterilmiştir (85).

IL-13; anahtar bir anti-inflamatuar sitokindir ve IL-4’le yakın ilişkilidir. Esas olarak T hücreleri, mast hücreleri ve aktive bazofiller tarafından üretilir. IL-13’un anti-inflamatuar aktivitesi IL-1, TNF-α, IL-8 ve IL-6 gibi inflamatuar sitokinleri inhibe eden özelliğine bağlıdır (86).
IL-15; biyolojik aktivitelerinin birçokunu IL-2 ile paylaşan önemli bir sitokindir ve mezotelyal hücreler gibi çeşitli hücre tiplerinden satınmaktadır. IL-15 lokal doku inflamatur yanıtının ve adaptif immünitenin anahtar bir düzenleyicisidir. Ayrıca kısmen NK hücre proliferasyonu, sitotoksisite, IFN-γ ve TNF-α üretimine ilişkilidir (87).

3.5.4 Yapılaşıklık Gelişiminde Doku Yeniden Yapılanması

Ekstrasellüler Matriks (ECM) depositleri ve doku yeniden modellemesi normal yara iyileşmesinin bütün fazlarında yani; hücre migrasyonu, büyüme ve başkalışım, anjiogenez ve doku fibrozisinde kritik öneme sahiptir (86,88). Yara iyileşmesi boyunca, yara hücreleri ECM ile dinamik bağlı içindeyken ve integrinler tarafından yürütülen etkileşim ve iletişim süresince yukarıdaki işlemleri düzenleyen hücreler arası sinyaller gönderirler. Ek olarak, yara hücreleri; kollajenaz, fibronektin, nitranektin, laminin, elastin ve proteoglikan gibi hücre iyileşmesi işlemine izin veren birçok proteolitik enzim sentezler ve salgılarlar (80).

Doku zedelenmesinden hemen sonra, fibriller kollajenin kana karışması ECM’i düzenleyen; agregasyon ve trombositlerin aktivasyonu, kemotaktik faktörlerin salgısı, büyüme faktörlerinin salgısı gibi basamakları tetikler. ECM’in major yapıtaşlarından olan fibronektin; hücre migrasyonu ve kollajen depositleri ve daha sonraki reepitelizasyon ve yara kontraksiyonunun düzenlenmesi için bir yapı iskelesi gibi yara içerisinde depolanır (80). Kollajenlerin proteolitik yıkımı ve küçük fragmanlardaki fibronektin inflamatur hücreleri ve fibroblastları hasarlı alanın içine çeker. Hasarlı fibronektin parçacıkları aynı zamanda MMPs ve PA salınımını uyarır ve proteoglikan yoğunluğunu artırır (51). Bu parçacıklar aynı zamanda çeşitli büyüme faktörlerinin ve
sitokinlerin salınımını da uyarmaktadır (51). Bu sitokinlerin birçok proteazları ve ECM yapıştanmasını düzenler. Bu sitokinlerin hareketlerinin nötralizasyonu, fibronektin parçacık-aracılı MMP-3 salgısını ve baskılanmış proteoglikan sentezini azaltır. Şekil-4’de gösterildiği gibi ECM yapışlanları boyunca etkileşimler, proteazlar ve sitokinler, peritoneal yara iyileşme işlemi süresince ortaya çıkan inflamatuar cevap, anjiyogenez ve dokunun yeniden Yapıştanmasında kritik rol alan feed mekanizmasını düzenler (51) (Şekil 4).

ECM’nin peritoneal çevrede; yara iyileşmesi ve yapışıklık gelişmesi süresince olan rolü ve yeniden Yapıştanması hakkında çok az bilgi vardır (51,77). Kollajen tip 1, kollajen tip 3 ve fibronektin peritoneal duvarda yerleşmiştir ve bunların sentezlenmesi peritoneal mezotelyal hücreler ve yapışıklıktaki fibroblastlarda görülmuştur. TGF-β, insan yapışıklık fibroblastındaki fibronektin ve prokollajen 1 sentezini artırır, halbuki TGF-β mezotelyal hücrelerde kollajen 1 üzerinde sınırlı etkiye sahip olup asıl olarak kollagen tip 3 sentezini uyarrır. TGF-β’nin fazla üretimi, artış yapışıklık gelişim insidansı ile ilişkilidir Peritoneal mezotelyal hücreler, birçok peritoneal organın serozal yüzeyinde ,α ve β3 gibi integrinleri sentezler (51).

Şekil 6 ıda görüldüğü gibi, bu integrinler özellikle fibronektin ve nitronektini bağılar, peritoneal serozal doku ve mezotelyal hücreler tarafından salınır ve TGF-β tarafından düzenlenirler (89).
Şekil–6: Peritoneal yara iyileşmesi ve/veya yapışıklık gelişimi ile sonuçlanan sitokinler, kemokinler ve yapışıklık molekülleri tarafından regüle edilen fibrinolitik sistem ve matriks metalloproteinazların şematik gösterilmesi (51)

ECM ayrıca büyüme faktörleri ve sitokinlerin düzenlenmesinde de önemlidir. TNF-α ve PDGF salınmaları ECM proteinlerinin varlığına bağlı olduğu in-vitro deneylerde gösterilmiştir (51).

Doku yeniden modellemesi ve fibrozis uyarılması; sadece fibroblastın kemotatik ihtiyacının yükseltilmesi ve ECM proteinlerinin arttırılması tarafından değil, aynı zamanda ECM’i parçalayan proteolitik enzimlerin farklılaşmasını düzenlemesini esnasında da oluşmaktadır. Yara tamiri işlemindeki ilk olay fibrinden zengin eksudanın geçici matrikste depolanmasıdır (67,80,88). Bu matriks; yara iyileşmesinin başlatılmasındaki anahtar elementleri ile beraber farklı maddeleri içerir; fakat bu matriksin çözünmesi, iyileşme sürecinin devamlılığı için gereklidir (80). Fibrinolitik sistemin ve MMP’lerin yapıştaları, ECM proteolizi için gerekli birçok süreci düzenlemek için farklı yollarla birlikte hareket ederler (80,90).
3.5.4.1 Fibrinolitik Sistemin Rolü

Yapısalık gelişimi ve yeniden yapılmasında fibrinolizisin rolü, iyileşme süresince oluşan fibrin pıhtılarını eritmektir. Zimojen prekürsör, plazminojen doku plazminojen aktivatörü (tPA) ve urokinaz –benzeri plazminojen aktivatörü (uPA) tarafından plazmine dönüştürülür. Plazminojen aktivatörleri endoproteinaz ailesinde olan bir serin proteinazdır. Diğer endoproteinazlar sistein proteinaz, aspartil proteinaz ve metalloproteinazdır.

aktivitesinde bir artış gözlenir. Ek olarak, tPA bağlayan anexin II heterotetrameri (AIIt), plazminojen ve plazmin, plazminojenin plazmine tPA bağlı olarak dönüşümünü uyarır ve AIIt endotelyal hücrelerin ekstrasellüler yüzeylerindeki plazminojen için anahtar fiziolojik reseptördür.

Doku travması, iskemi ve enfeksiyon gibi yapısal gelişimin insidansını artıran olaylar, tPA aktivitesindeki hızlı düşüş nedeniyle indirgenmiş peritoneal fibrinotik aktivite ve operasyon sonrası oluşan PAI-1 üretimindeki artış ile ilişkilidir (67,93). PAI-1’in salınımının artması ve azalması tPA aktivitesi adezyolizden sonraki yapışıklıkların yeniden oluşumundaki artış insidansı açıklayabilir. Ayrıca salınımı kısmi olarak TGF-β ve diğer sitokinler tarafından düzenlenen proteolitik enzimler, ECM yıkılması ve yapışıklık gelişimi üzerinde etkili olabilirler (şekil 7)(51).

Şekil–7: Büyüme faktörleri, sitokiler, kemokinler, eikosanoidler, proteazlar ve yapışıklık molekülleri tarafından düzenlenen fibroblast proliferasyonu ve migrasyonunun artması sonucunda oluşan yapışıklık gelişiminin şematik gösterilmesi
3.5.4.2 Matriks Metalloproteinazların Rolü

Günümüzde 4 adet TIMP tanımlanmıştır (TIMP1-4). MMP; menstrasyon, ovulasyon, implanstasyon ve prostat fonksiyonlarında önemli görevleri bulunmaktadır. MMP’inaktif proenzim olarak üretilir ve aktivasyon gereksinimi vardır. Bu da plazmin, tripsin, ve nötrofil elastaz gibi serin proteazlar ile sağlanır (88,94,95).

Peritoneal serozal yüzeylerde ve fibröz yapışıklıklarda MMP ve TIMP salgını gösterilmiştir. Ancak fibröz yapışıklıklarda özellikle TIMP-1 seviyesi peritonda serozal yüzeylere oranla belirgin olarak yüksek tespit edilmiştir (96). Anormal MMP ve TIMP salgılanması endometriozis içeren çoğu jinekolojik durumlarla ve yapışlık gelişmesi / yeniden oluşmasyla ilişkilidir (97,98). Fibröz yapışıklıklardaki bu TIMP-1 salınının artışı, TGF-β1 ve integrin salınımı ile paraleldir (59,88).
3.5.4.2.1 MMP ve TIMP: Adezyon Formasyon / Reformasyonunda ve Fibrinolizisteki Önemi

3.6 Yapışıklıkların Önlenmesi

Postoperatif cerrahi yapışıklıkları azaltmak için bir çok yöntem denenmiştir. Yapılan araştırmalarda, klinik olarak adezyonların önlenmesi için efektif metodlardan cerrahi tekniker ve klinik ajanlar primer ve sekonder postoperatif peritoneal yapışıklıkların oluşumunun önlenmesinde etkildirler. Yapışıklığı engellemeye temel yaklaşımlar; uygun cerrahi teknik, intraabdominal yapılar yönelli travmanın azaltılması, yapışıklıkları önlemeye yönelik maddeleri içermektedir (100). Genel olarak sıralayacak olursak; mümkün olduğunca az iskemik doku bırakılması, serozal yüzeylerin yaralanmasına dikkat edilmesi, ıslak kompreslerin oprerasyonda kullanılması, gereksiz disseksiyondan kaçınılması, hemostazın iyi yapılması, çok zorunlu olmadıkça dren konulmaması vb. sayılabilir.
Destekleyici tedaviler de iki başlık altında incelenebilir; i) yapışıklık oluşumuna yol açan inflamatuar hadiseyi bozan ilaçların uygulanması ve ii) yara iyileşmesinin erken safhasında bariyer yöntemler ile serozal yüzeylerin temasının engellenmesidir (101).

3.6.1 Cerrahi Teknikler

Cerrahi teknikler ile yapışıklık oluşumu arasındaki ilişkiler Tablo 1’de gösterilmiştir.

Tablo-1: Yapışıklık oluşumundaki cerrahi teknikler

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Doku hasarı</td>
</tr>
<tr>
<td>2.</td>
<td>Peritona konan dikişler</td>
</tr>
<tr>
<td>3.</td>
<td>Yabancı madde kullanılması</td>
</tr>
<tr>
<td>4.</td>
<td>Gause’lı bez</td>
</tr>
<tr>
<td>5.</td>
<td>İntraperitoneal kan depozitleri</td>
</tr>
<tr>
<td>6.</td>
<td>Minimal invaziv cerrahi</td>
</tr>
</tbody>
</table>

3.6.1.1 Doku Hasarı

Cerrahi sırasında periton; ezilme, ısı, elektrik, lazer, mekanik, hipoksik ve strangülasyon hasarına yatkınlırdır ve bu durum yüzeyel mezotelyal tabakanın hasarlanmasına neden olur. Alttaki bağ doku ve ilişkili mikrovasküler yapıların bozulması inflamatuar cevaba yol açar, fibrinolitik aktiviteyi baskılar ve yapışıklık oluşumuna neden olur. Cerrahlar gerek laparatomi gerekse laparoskopi esnasında
atravmatik, yumuşak ve kanamasız prensiplere uymalı, serozal bütünü bozan ve vaskülar travmaya yol açan ekartör ve cerrahi aletler dişeksiyonyu düşünülmemeyen dokulara yerleştirilmemelidir (10).

3.6.1.2 Peritona konan dikişler

dikişler ve gastrointestinal yoldan sıçrayan maddeler peritoneal inflamatuar reaksiyonu yol açar. Bu inflamatuar yanıt yapışıklık gelişimini multipl yabancı cisim granülomlarıyla potansiyalize eder.

3.6.1.3. Yabancı Maddeler

3.6.1.4 Gause’lı bez

3.6.1.5 İntraperitoneal Kan Depozitleri

İntraperitoneal kan depozitlerinin varlığında yapışıklıkların artması hala tartışmalıdır. Günümüze kadar yapılan hayvan modellerindeki çalışmalarında büyük pihtılar yapışıklık üretiği, ancak küçük pihtıların peritoneal hasar yoksa yapışıklık üretimine neden olmadığı bildirilmiştir (106). Hemostaz gereklidir ve kan yıkama
sıvılarıyla ortamdan uzaklaştırılır. Eğer iğne uçlu koter ile yeterli hemostaz sağlanamazsa, doku strangülasyonunu önlemeye düşünceyle en ince sentetik dikişler kullanılmalıdır (10). Sonuç olarak, cerrahi müdahale sonrasında yapılan hemostazın, oluşacak kanama ve pıhtı oluşumunun büyüklüğü ile doğru orantılı olarak yapışıklık gelişmesi üzerine önemli bir rolü vardır.

3.6.1.6 Minimal İnvaziv Cerrahi

Yeni gelişen yapışıklıkların laparotomi olmuş hastalarda daha sık olmasından beri; minimal invaziv/laparoskopik cerrahi teknikleri kullanmanın yapışıklığı önlemede çözüm için cesaretlendirici olabileceği düşünülmüştür. Laparoskopiyle yapışıklık gelişimi tekrar oluşabilir ve laparoskopinin mikrocerrahi adezyolize üstün olduğu gösterilememiştir (10).

3.6.2. Farmakolojik Destekleyici Tedavi

Farmakolojik ajanlar (Tablo 2) inflamatuar olayın ve/veya yapışıklık gelişiminin (koagülasyon, fibrin depolanması gibi) çeşitli etkilerine ve basamaklarına uygulanabilir. İlk olarak iskemik bölgeler yapışıklık gelişimine eğilimlidir ancak kan akımı yoktur ve bu yüzden sistemik ilaç yararlanımı da yoktur. İkincisi; peritoneal memban aşırı bir hızlı absorpsiyon mekanizmasına sahiptir, bunu da periton içine uygulanan ajanların etkinliğini ve yarılaması ömrünü sınırlırandırmaktadır. Üçüncü; herhangi bir yapışıklık önleyici ajan yapışıklık gelişimine ve normal olmayan yara iyileşmesine karşı spesifik olarak etki etmek zorundadır; bu yapışıklık gelişimi ve normal iyileşme aşamaları ile aynı basamakları kullanır. (eksudasyon, koagülasyon, fibrin depozisyonu ve fibroblastik aktivite ve proliferasyon) (100).
Tablo-2: Yapışıklık oluşum aşamaslarına etkili ilaçlar

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NSAID</td>
</tr>
<tr>
<td>2.</td>
<td>KortikosteroiIDler</td>
</tr>
<tr>
<td>3.</td>
<td>Antihistaminikler</td>
</tr>
<tr>
<td>4.</td>
<td>Progesteron/Östrojen</td>
</tr>
<tr>
<td>5.</td>
<td>Antikoagulanlar</td>
</tr>
<tr>
<td>6.</td>
<td>Fibrinolitikler</td>
</tr>
</tbody>
</table>

3.6.2.1 Nonsteroid Anti-İnflamatuar İlaçlar (NSAID)

NSAID’lar siklooksijenaz aktivitesini değiştirir, araşidonik asit metabolizmasını bozar, prostaglandin ve tromboksan gibi son ürünlerin oluşumunu önler. NSAID’ler prostaglandin ve tromboksan üretimini inhibe ederek, damarsal geçirgenliği, trombosit agregasyonunu ve koagülasyonu azaltarak makrofaj fonksiyonunu bozar. NSAID’ler birçok hayvan modelinde peritoneal yapışıklık gelişimini azaltmıştır (100).

3.6.2.2 Glikokortikoid ve Antihistaminik İlaçlar

Kortikosteroid tedavisi damarsal geçirgenliği ve sitokinlerle kemokinlerin serbestlenmesini azaltarak inflamatuar yanyüzü zayıflatır. Bu tedavide karşılık sonuçlarla karşılaştırılır (100). Deksametazon, hidrokortizon ve prednizolon gibi kortikosteroidler yalnız ve prometazin gibi antihistaminiklerle birlikte intraperitoneal uygulandığında yapışıklık gelişimini azalttı göstermiştir (10). Sıklıkla kortikosteroidlerle birlikte kullanılan antihistaminikler, fibroblast proliferasyonunu inhibe eder. İmmünsüpresyon ve gecikmiş yara iyileşmesiyle başlatılan potansiyel yan etkiler (infeksiyon, insizyonel...
herni ve yara ayrılması gibi) göstermektedir ki; bu ajanlar oldukça dikkatli kullanılmalıdır (10,100,106).

3.6.2.3 Progesteron/Östrojen

Progesteron, hayvan modellerinde yapışıklık gelişimini azaltır. İnsan çalışmalarında bu bulguyu onaylamak mümkün olmadığı gibi gerek intraperitoneal gerekse intramusküler Medroksiprogesteron Asetat kullanılması ile yapışıklık gelişiminin arttığı görülmüştür. Östrojenin hayvan modellerinde yağışıklığın arttığı gözlenmiş yine hayvan çalışmalarında yağ nekrozu ve fibrotik değişikliklerin anöstrojenik deneklerde daha az görüldüğü bildirilmiştir. (10).

3.6.2.4 Antikoagülanlar

3.6.2.5 Fibrinolitikler

Fibrinolitik ajanlar hemorajik komplikasyonlara yol açtığı bilinmektedir. Bununla birlikte rekombinant tPA (rtPA), lokal olarak uygulandığında hayvan modellerinde komplikasyon oranlarını artırından yapışıklık gelişimini azalttığı gösterilmiştir (87,90). Cerrahi sonrası yapışıklık önlenmesinde umut verici bir yaklaşım tPA kullanımyla tanımlanmıştır. rtPA’nın etkinliği rekombinant DNA teknikleriyle

3.6.2.7 Antibiyotikler

Geniş-spektrumlu antibiyotikler ameliyat sonrası infeksiyon ve yapısalık gelişimine karşı koruyucu olarak yaygın şekilde kullanılmaktadır. Karın içi yıkama sıvısındaki antibiyotikler aslında yapısalık gelişimine yol açar ve yapısalık önlenmesinde tek ajan olarak önerilmemektedirler (10).

3.6.3 Adjuvan Bariyer Tedavisi

Yapısalık önlenmesi için kullanılan bariyerler temel olarak 2 ana gruba ayrılır: makromoleküler solüsyonlar ve mekanik bariyerler (Tablo 3). Geçmiş yıllarda her iki tip bariyer de yapısalık önlenmesinde gerçek bir ilerleme göstermiştir (10,109). İdeal bariyer, güvenli ve efektif olmanın yanı sıra non-inflamatuar, non-immünojenik, yeni mezotelyal hücrelerin gelişimi süresince sütür veya stapler olmayan yerde kalan,
kanın varlığında etkinliğini kaybetmeyen, tamamen biyolojik olarak indirgenebilir ve ucuz olan özelliklere sahip olmalıdır. Ek olarak; iyileşmeyi engellememeli, infeksiyonu artırmamalı ve yeni yapısalıklara neden olmamalıdır (10).

Tablo-3: Yapısalık oluşumunda kullanılması gereken katı ve solüsyon bariyerler

<table>
<thead>
<tr>
<th>Solüsyonlar</th>
<th>Katı Bariyerler</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kristaloidler</td>
<td>1. Otolog peritoneal transplantlar</td>
</tr>
<tr>
<td>2. %32 Dextran 70</td>
<td>2. PTFE(Gore-Tex)</td>
</tr>
<tr>
<td>3. Hyaluronik Asit</td>
<td>3. Okside rejenere selülöz (ORC)(Interceed)</td>
</tr>
<tr>
<td>4. HA-PBS/ Sepracoat</td>
<td>4. HA-CMC (seprafilm)</td>
</tr>
<tr>
<td>5. Karboxymetilsellüloz</td>
<td></td>
</tr>
</tbody>
</table>

3.6.3.1 Bariyer Solüsyonları

3.6.3.1.1. Kristaloidler

Peritoneal boşluktan su ve elektrolit emilimi hızlıdır, 500 ml’ye kadar olan isoosmolar sodyum klorid 24 saatte daha az bir sürede emilir (10). Çünkü peritoneal yüzeyde yeni mezotelyal hücreler oluşumu 5-8 gün sürer, fibrin depozisyonu ve yapısalık gelişimini aşamalarından önce kristaloid bir solüsyon absorbe edilmiş olmalıdır. İntraperitoneal kristaloid yüklenmesinin yapısalık gelişimini engelmesi beklenmez. Çalışmalar kristaloid yüklenmesi alan hastaların yaklaşık %80’inde tekrar yapısalık gelişimi olduğunu göstermiştir (33).

3.6.3.1.2 %32 Dextran 70

3.6.3.1.3 Hyaluronik Asit (HA):

3.6.3.1.4 HA ile Kombine Fosfat-Tamponlu-Tuzlar (HA-PBS)

HA yapıaktılık gelişimini önlemek için PBS ile makromoleküler bir solüsyonda birleştirilir ve buna Sepracoat® (Genzyme, Cambridge, Mass) adı verilir. HA-PBS intraoperatif olarak diseksiyona başlamadan önce uygulanır ve travmadan sonra peritoneal yüzeylerin ayrılmamasından ziyade; indirekt cerrahi travmadan korumak için kullanılır (113). Hayvan modellerinde bu solüsyon serozal hasar, inflamasyonu ve cerrahi sonrası yapıaktılıkleri azalttığı gözlenmiştir (113). Laparotomi ile jinekolojik pelvik yaklaşımarda multipl travmatize edilen hastalar üzerinde HA-PBS denenmiş ve yeni yapıaktılık oluşum insidansını, boyutunu ve şiddetini anlamlı ve güvenli olarak azalttığı tesbit edilmiştir (76).

3.6.3.1.5 Karboksimetilselüloz:

3.6.3.2 Katı Bariyerler

3.6.3.2.1 Otolog Peritoneal Transplantlar

Deneysel çalışmalarda; paryetal peritondaki lezyonların mikrocerrahi yoluyla otolog peritoneal transplantlarla kapatmanın şiddetli yapışıklık oluşumunu önleyebileceğini gösterilmiştir (114). Uterin serozanın yaralanması sonucunda viseral peritoneal yapışıklıkların, otolog peritoneal transplantlar kullanıldığında daha anlamlı düştüğü gözlemmiştir. Bu da, jinekolojik cerrahi sonrası viseral peritondaki yaralanmadan dolayı yapışıklık gelişim riskinin, paryetal peritondakine göre daha fazla olduğunu göstermektedir.

3.6.3.2.2 Sentetik Katı Bariyerler

Doğal ve sentetik greft materyallerinin bir çoğu travmatize yüzeylerde yapışıklık gelişimini önlemek için kullanılmaktadır. Doğal materyaller; periton, omentum, HA, yağ, amnion zarıdır (115). Sentetik materyaller; polivinil alkol film ve tantalum kağıdı olup geçmişte kullanılmıştır. Son zamanlarda ilgi; doku yüzeylerini ayırmak için cerrahi sonunda travmatize dokuya mekanik bariyerler konulmasına odaklandı. Bu sentetik bariyerler; Gelfilm®, Gelfoam®, Surgicell®, Silastic®, politetrafloretilen meşleri (PTFE, Gore-Tex®), Interceed (TC7) ® ve Seprafilm®-sodyum hyaluronat ve karboksimetilselüloz kimyasal olarak üretilmiş biyolojik olarak kendi kendine eriyebilen membran (HA-CMC)’lardır(115).

3.6.3.2.2.1 Gore-tex

Genişletilmiş PTFE non-reaktif, anti-trombojenik, non-toksik sentetik üretim olup hücresel transmigrasyon ve doku yapışmasını inhibe eden gözenekleri vardır.
Travmatize olmuş dokuya uygulandığında yapışıklık gelişimini azalttığı gösterilmiştir (116). Bir PTFE bariyeri doku hasarının tipine ve/veya hemostaz sağlanmış olmasına bakılmaksızın yapışıklık gelişimini öner. Genişletilmiş PTFE’nin miyomektomi sonrasında pelvik yan duvar yapışıklıklarını azalttığı gösterilmiştir (117).

PTFE’nin laparoskopide kullanımı kolay değildir (112). PTFE’nin ayrıca fizyolojik ve non-absorbable bir alanda tutulması gerektdir. Bundan dolayı hem sürekli olarak bu yerde bırakılması hem de cerrahi olarak çıkarılmalıdır. PTFE en az reaksiyona sebep olan polimerlerden biridir ve peritonda morfolojik değişikliklere az yol açar ya da yol açmaz ve in-vivo birkaç yıldan sonra bile kimyasal ve biyolojik bozulmaya karşı koyar. PTFE ayrıca kardiyovasküler cerrahide de başarıyla kullanılmıştır, burada perikardiyal yama olarak kullanılarak minimal yapışıklık gelişimi ve minimal yabancı cisim reaksiyonu gibi istenen sonuçlar elde edilmiştir (112,116).

3.6.3.2.2 Interceed:

Okside Rejenere Selüloz (ORC)’ un hem hayvan hem de insan çalışmalarda peritoneal yüzeyleri ayırarak ve aralarında bariyer oluşturarak yapışıklık gelişimini azalttığı gösterilmiştir. ORC’nin yapışıklık gelişimini önlemenin ötesinde ince cerrahi teknik elde etmeyi sağladığı görülmektedir. ORC yüzey alanı ve yapışıklık gelişimini %20 oranında azaltır. Peritoneal bir yüzeye uygulandığında 8 saat içinde jel haline gelir (100). ORC laparoskopiyile kolaylıkla uygulanabilir, organ sınırlarını takip eder ve tespit edilmeye ihtiyaç duymaz.

ORC peritoneal yüzeye uygulanmadan önce tam bir hemostazın sağlanması gereklidir, nitekim intraperitoneal kan varlığı etkinsini azaltır (118). Klinik gözlemler göstermektedir ki; ORC konduğu esnada küçük miktardaki kanama dahi materyalin

3.6.3.2.2.3. Seprafilm (HA-CMC)

HA-CMC; ameliyat sonrası şiddetli yapı sıkıkların önlenmesinde kullanılan nontoksik, non-immünojenik, biolojik olarak uyumlu bir maddedir. Uygulandıktan yaklaşık 24 saat sonra hidrofilik jel haline gelir ve hasarlı dokuyu yeni mezotelyal hücrelerin oluşumu sırasında 7 gün boyunca koruyan bir tabaka sağlar. ORC gibi HA komponenti de vücuttan 28 gün içinde temizlenir; daha az temizlenen ise CMC komponentidir. “Interceed”den farklı olarak HA-CMC kan varlığında kullanılabilir (1119). HA-CMC; insizyon hattındaki ameliyat sonrası yapı sıkıklık insidansını %50’den fazla azalttığı gözlenmiştir. Laparotomi uygulanan hastalarla karşılaştırıldığında ise yapı sıkıklık oranı %40’in altında olarak tespit edilmiştir. HA-CMC’ye cevap veren hastalar kontrol grubuyla karşılaştırıldığında ayrıca daha hafif şiddetde yapı sıkıklıklara sahip olduğu gözlenmiştir. Omentum, mide, ince barsak, karın duvarı ve dalakla ilişkili kesike bağlı yapı sıkıklıkların en önemli sebebi orta hat insizyonu olup HA-CMC uygulanan hastalarda
anlamlı olarak düşük bulunmuştur. HA-CMC ile tedavi edilen hastalarda yüksek bir pulmoner emboli ve intraperitoneal apse riski tespit edilmiştir ancak, bu bulgular istatistiksel olarak anlamlı bulunmamıştır (78,101). Bu komplikasyonların mekanizmaları bilinmemektedir. HA ve CMC’nin temizlenmesindeki relatif değişiklikler film fragmantasyonuna ve artmış emboliye ve apse riskine neden olabileceği belirtilmiştir (33).

3.7 Anjiyogenez ve Peritoneal Yapışıklık

Anjiyogenezis; yeni kapiller damar gelişimi olup embriyonik gelişme, yara iyileşmesi ve organ hipertrofisi gibi fiziolojik olaylar döneminde görülmektedir. Anjiyogenez normalde matür damar ağının gelişim ve değişiminde görülen kompleks biyolojik bir olaydır (120,121). Patojik anjiyogenezis ve yeni damar oluşumu tümör büyüme ve metastazında, gelişimsel hastalıklarda, iskemik hastalıklarda olmada.
hücre migrasyonunu, hücre farklılaşmasını ve diğer hücresel aktiviteleri gerektirir (56,122,123).

Anjiyogenezin ilk kısımlarında endotelyal hücrelerdeki matriks metalloproteinazları (MMPs) ve serin proteazların artışı, fibronektin ve laminin gibi ECM komponentlerini azaltmak için önemlidir (56,58,88). Ayrıca bu proteazlar inaktif formda üretilir ve lokal işlevlerini başlatmak için aktive olmaları gerekir. Bu enzimlerin proteolitik aktiviteleri, doğal fizyolojik inhibitörler, MMPs’nin doku inhibitörleri (TIMPs) ve plazminojen aktivatör inhibitörleri (PAIs) tarafından düzenlenir (35-40, 60). IL-1, IL-8, TNFα, GM-CSF, VEGF, FGFs, EGF, TGF-α, TGF-β, PDGF ve IGF-1 gibi sitokinler ve büyüme faktörlerinin; 1- MMPs, fibrinolitik sistem ve onların inhibitörlerini düzenleyen, 2- Endotelyal hücre proliferasyonu ve göçünü düzenleyebilme yetenekleri nedeniyle anjiogenik faktörleri artırılmaktadır (56,88,89). MMPs, tPA, uPA, TIMPs ve PAIs paryetal peritoneal, peritoneal mezotelyal hücrelerde, adezyon fibroblastlarında ve benzer diğer sistemlerde salınır ve bunların salınımı çeşitli sitokin ve büyüme faktörleriyle düzenlenir (54,59,90,123). İnsan peritoneal kapillerleri ve arteryal endotel hücrelerinde; proteolitik hücreleri ve diğer inhibitörleri düzenleyecek VEGF ve diğer faktörlerin salınımı sağlar (89).

VEGF’in; koagülasyon, fibrinolitik ve anjiogenik aktivitelerde anahtar rol oynadığının bilinmesinden beri peritoneal yapışıklık gelişiminde kritik bir rol oynadığı düşünülmektedir (124). Peritoneal mezotelyal hücreler ve vasküler endotelyal hücreler; yapışıklık gelişimi sırasında peritoneal anjiyogenezin düzenlenmesinde rol alan VEGF ve FGF-2’nin salımından sorumludur (89). Fibroblast büyüme faktörü-1 (FGF-1) ve FGF-2 klasik sekretuar sinyal peptitlerine ihtiyaç duyar ve bunlar mekanik kaynaklı yaralanmanın bir sonucu olarak çıkar.
Bu büyüme faktörlerinin anjiyogenik önemi mikrovasküler endotelyal hücrelerdeki PA (uPA ve tPA) ve PAI-1’in salınımının değişmesine yansıır ve VEGF endotelyal hücrelerde vWF ve doku faktörlerinin salınığını uyarır. Bunların yanında VEGF, FGF, EGF ve TGF-α hem tek başına hem de sinerjistik etkilerle birlikte TGF-β’yı latent formundan aktif formuna çeviren PA salınımını stimüle eder (51,59,90). FGF-2 ve TGF-β PA aktivitesi üzerinde ayrıca zıt bir etkiye de sahiptir. FGF; PAI-1 sentezinde nispeten az bir etki gösterir ve uPA salınımda potent bir indükleyici olarak rol oynar, oysa ki TGF-β uPA sentezini azaltırken, PAI-1 sentezini ise artırır (59). Keratinosit growth faktör (KGF) epitel hücreleri için yüksek mitojen aktiviteye sahiptir ve ayrıca uPA salınığını uyarır (61). M-CSF, GM-CSF, MCP-1 gibi sitokin ve kemokinler fibrinolitik sistemi düzenlerler (53,67,123). Anjiyogenez ayrıca anjiyogenik faktörler ve onların inhibitörleri arasındaki dengeyi de bağlıdır. TGF-β, TNF-α, INFs gibi sitokinler ve çeşitli başka ajanlar anjiogenetik baskıyıcıdır. Bunlar kollajen sentez düzenleyicileri olan protamin (arjininden zengin FGF’nin mitojen aktivitesini inhibe eden bir protein), siklosporin, PF-4 ve HA (yıkım ürünleri de anjiyogenik olabilir), trombospordin (trombositlerden salınan) olgun hareketsiz damarların çevresinde bulunur. Ek olarak; endojen bir östrojen metabolitin anjiyogenezi inhibe ettiği in vivo olarak gösterilmiştir, ve in vitro olarak da endotel hücre proliferasyonunu ve migrasyonunu engellemiş (uPA’yı inhibe eden bir protein) (125,126). Vasküler endotelyal hücreler; bunları peritonda bulundurarak, ovaryan steroidler için reseptörler içerir, bunlarda peritoneal iyileşme ve yapışıklık gelişimi sonucu olan vasküler aktiviteleri ile potansiyel olarak regüle ederler (127). Ayrıca anjiyogenik aktörlerin bir kısmı hummalı bir araştırmaya tabi tutulmaktadır ve bu çalışmaların sonuçları; yeni damar gelişiminin başlaması, sürdürülmesi ve sonlandırılması, anjiyogeneze mücadele

3.7.1 Vasküler Patogenezisde Vasküler Endotelyal Growth Faktörün Yeri

Varsayılan anjiogenik faktörlerin sayısı giderek artmaktadır. Fakat VEGF ,ilk olarak tanımlanan anjiogenik madde olup hem normal hem de patolojik anjiogeneziste önemli bir regülatör olduğuna yaygın olarak inanılmaktadır (132).
3.7.1.1 VEGF Yapısı ve Fonksiyonu

VEGF, VEGF-A olarak bilinir, sekiz korunmuş tirozin rezidülerinin mevcudiyetiyle karakterize büyüme faktörlerinin sistemin grup süperailesinde yer almakta dur (130-133). VEGF, homodimer formda olan bir glikoprotein olarak salgılanmaktadır. VEGF’e ilaveten üç major izoformu mevcut olup bunlar hormonların, çeşitli orf virüslerden kodlanan VEGF-B, VEGF-C, VEGF-D, VEGF-E içeren büyüme faktörlerinin (134-136) ve plasental büyüme faktörünün super ailesidir (PIGF-1 ve PIGF-2 izoformları) (137).

VEGF, endotel hücresi-spesifik mitojen aktivitesine sahip olup anjiogenezisini stimüle eder. VEGF, vazoaktif subtans histaminin 50,000 kat daha fazla vasküler permabiliteyi uyararak etki gösterir. Aslında, mikrovasküler permabilite artışı ile ilişkili tümör büyümesi görüşü VEGF’in orjinal keşfi için esas oluşturmaktadır. Buna göre ilk olarak vasküler permabilite faktörü (VPF) olarak adlandırılmıştır (138). VEGF’in fonksiyon ve salgılanmasını amaçlayan birçok çalışma, fizyolojik ve patolojik anjiogeneziste bu faktörün öneminin vurgulamaktadır. VEGF ve reseptörleri embriogenezis süresince kan damarlarının geliştiği alanlardan oluşmaktadır (140,141). VEGF veya reseptörlerinin hedeflerinin bozulması, damar gelişiminde şiddetli hasarlardan dolayı erken embriyonik ölümlere yol açmaktadır (142,143). VEGF ve reseptörleri için mRNA düzeyleri postnatal dönemde anlamlı olarak azalmaktadır, fakat salgılanması anjiogenezis devam eden dokuların endotellerinde hatta pencerele endotelin proksimal kısımlarında artış devam etmektedir (144,145). Postnatal VEGF fonksiyonunun blokaji kemik gelişimi süresince fizyolojik neovaskülerizasyonu ve bayanların üreme sikluslarını birçok yönünden inhibe eder (146). VEGF salgılanması tümör, RA, prematüre retinopatisi ve diğerler hastalıklarla ilişkili patolojik

51
anjiogenezile ilişkilidir (147-149). Ve VEGF fonksiyonun inhibisyonu kanserli ve oküler hastalıklı rat modellerinde patolojik damar oluşumunu azaltmaktadır (150,151).

3.7.1.2 Vasküler Endotelyal Growth Faktör Reseptörleri

3 tip vasküler endotelyal growth faktör reseptörü bulunmaktadır.

Farelerde VEGFR-1 geninin inaktivasyonu; fonksiyonel kan damarlarında endotel hücrelerinin organizasyon yetmezliğine neden olarak intruterin embriyonik 8.5 ile 9.5’inci günler arasında ölüme yol açmaktadır (161). Bu hayvanlarda damar formasyonunun eksikliği endotelyal progenitörlerin sayılarında anormal bir artış ile ilişkili olup devamlı VEGF hiperaktivitesi gözlenmiştir ve gelişim süresince VEGF fonksiyonun negatif bir regülatörü gibi etkileyebildiği gösterilmiştir.

Şekil 8- Vasküler endotelyal growth faktör(VEGF) ve reseptörleri (VEGFR); VEGFR-1 ve VEGFR-2 (damar) ve VEGFR-3 (lenfatik) gösterilmesi (162)

VEGF-2 normal anjiogeneziş ve hematopoezis için gerekli olan bir reseptördür. VEGF-A major etkisini bu reseptör vasitasıyla ortaya çıkarmaktadır. VEGF-C ve VEGF-,VEGFR-3’e olduğu kadar VEGF-2 de bağlanmaktadır(şekil 8).
VEGFR-3, özellikle lenfatik endotelde basın olarak bulunmaktadır. VEDF-A bu reseptöre bağlanamakta daha ziyade VEGF-C ve VEGF-D bağlanarak lenfanjiogeneziste esas olarak etki göstermektedir (162).

3.7.2 Anjiojenik Faktörlerin İnhibisyonu

Tümörler, anjiojenik faktörlerin üretimiyile karakterize dokular olduklarından, bunların ekspresyonunun ya da etkilerinin inhibisyonu tümör anjiojenezinin baskılanmasında indirek ancak etkili bir yaklaşımdır. Öncelikli hedefler içinde en çok tercih edilenler VEGF ve VEGF reseptörleridir.

3.7.2.1 Anti VEGF Stratejileri

VEGF’in endotel hücreleri üzerinde bulunan transmembran tirozin kinaz reseptörlerine bağlanması ile tetiklenen sinyal yolunun birçok seviyede farklı açılardan inhibe edilerek VEGF’in etkinliğini önlemebilmektedir (163,164).

Bu mekanizmaları 3 grupta toplayabiliriz;

- VEGF inhibitörleri
- VEGFR inhibitörleri
- Monoklonal Antikorlar

3.7.2.1.1 VEGF’e Yönelik Monoklonal Antikorlar

rhuMab VEGF (Bevacizumab, Avastin.); Anti-anjiojenik ve anti-tümör etkinliği olan rekombinant monoklonal VEGF antikorudur. Bevacizumab VEGF-A isoformlarına spesifik olarak bağlanan ve biyolojik aktivitesini nötralize eden bir rekombinant monoklonal antikordur (şekil 9)(163). Bevacizumab 214 aminoasiten
oluşmaktadır ve molekül ağırlığı 149000 daltondur. Faz I çalışmalarında kemoterapi ile birlikte kullanıldığında serum VEGF seviyelerini ölçulemeyecek seviyelere kadar düşürdüğü ve farklı tümörlerde büyümeyi inhibe ettiği bulunmuştur. Ayrıca yakın zamanda yapılmış randomize faz III çalışmasında metastatik kolorektal kanserli hastalarda konvansiyonel tedaviye kıyasla klasik IFL tedavisyle kombine edildiğinde hastalarda hayatta kalmın önemli ölçüde arttığını, tümör ilerlemesinde ciddi azalmanın olduğu ve tromboembolik komplikasyonda herhangi bir artış olmadığı tespit edilmiştir (165,166). VEGF-trap; Faz I çalışmaları devam eden ve monoklonal antikorlara göre VEGF’e olan affinitesi çok daha yüksek olan spesifik VEGF antagonistidir. Cilt altı uygulanışı ise bir diğer önemli avantajıdır (167).

Şekil -9: Bevacizumab’in etki mekanizması (162)

3.7.2.1.2 VEGF Reseptörlerine Yönelik Tedaviler

VEGF sistemi aynı zamanda monoklonal antikorlarla yada spesifik tirozin kinaz inhibitörleri aracılığıyla VEGF’in reseptörleri hedef alınarak da inhibe edilebilir. Bunlar
anjiojenezde direk veya indirek olarak rol alan VEGFR-1 (flt-1), VEGFR-2 (Flk-1), Tie-1 ve Tie-2 gibi reseptörleri hedef alan küçük moleküllerdir. Bunların içinde ise en önemlisi, özellikle tümör dokusunda endotel hücre proliferasyonu ve kemotaksisinden sorumlu olan Flk-1 (VEGFR-2)'dir (168).

3.7.2.1.3 VEGF Reseptör Tirozin Kinaz İnhibitörleri

SU5416; klinik olarak test edilmiş ilk VEGF reseptör tirozin kinaz inhibitörüdür. Parenteral uygulanan kinolon derivesi olarak SU5416, VEGFR-2 (Flk-1)'i inhibe eder (169). Kısa yarılanma ömrü, aktif plazma konsantrasyonu için sık aralıklarla kullanılması, ve özellikle gemcitabine/cisplatin kemoterapisi ile kombine kullanımında ortaya çıkan pulmoner emboli, myokardiyal enfarktüs ve serebrovasküler olay gelişirmesi kullanımını kısıtlamaktadır (170).

SU6668; VEGF, bFGF ve PDGF reseptörlerini inhibe eden oral kullanımlı anti-anjiojenik ajandır (171). Günde tek dozultz uygulamalar hastalar tarafından tolore edilebilirken doz artışça nefes darlığı, göğüs ağrısı ve perikardiyal effüzyona sebep olabilmektedir (172).

SU11248; ise geniş spektrumlu oral tirozin kinaz inhibitörüdür ve VEGF, PDGF, c-Kit ile Flt-3 kinaz aktivitesini inhibe eder (173).

ZD6474; ise hem VEGF hem EGF reseptör tirozin kinaz inhibitörüdür. Kullanım sırasında diyare ve cilt kızarıklığı görülmesi özellikle EGF reseptörlerinin yaygın olarak bloke edildiğini göstermektedir(175).

CP-547,632 ise selektif VEGFR-2 tirozin kinaz inhibitörüdür. Faz I çalışmaları sevindirici farmakokinetik sonuçlar vermektedir(176).
4. GEREÇ VE YÖNTEM

4.1 Deneklerin Hazırlanması

4.2. Deneklerin Gruplara Ayırılması

Denekler herbiri on rattan oluşan üç gruba ayrıldı:

Grup 1: Kontrol grubu; Laparotomi ile çekumda abrazyon oluşturulan grup

Grup 2: Laparotomi ile çekumda abrazyon oluşturulan ve intraperitoneal 5 ml %0,9 NaCl solusyonu uygulanan grup,

Grup 3: Laparotomi ile çekumda abrazyon oluşturulan ve intraperitoneal 5 mg/kg Bevacizumab (avastin® Flakon, Roche) uygulanan grup

4.3. Anestezi ve Cerrahi İşlem

Genel anestezi oluşturmak amacı ile her biri 0.25ml/100 gr vücud ağırlığı dozunda olmak üzere 50 mg/ml konsantrasyonunda Ketamin HCL (Ketalar® Flakon, Eczacıbaşı) ve 20 mg/ml konsantrasyonunda Xylazine HCL (Rhompon® Flakon, Bayer) ratların sağ arka bacağından intramuskuler olarak uygulandı. Anesteziden sonra karın trasları yapılarak hayvanlarda operasyon sahası %10
Povidon İodine ile temizlendi. Yalnızca insizyon uygulanacak saha açık kalacak şekilde steril olarak örtüldü.

Karında 4 cm’lik vertikal orta hat insizyonu yapılarak cilt, cilt altı, linea alba, ve periton açıldı ve çekum serbestlendi, 1 cm² serozal alan peteşiyal kanamalar belirene kadar spanç ile fırçalanarak abrazyon yapıldı. Ayrıca abrazyon oluşturulan çekumun karşı tarafındaki abdominal duvarın sağ tarafına fırçalama yöntemi ile tekrar 1 cm²’lik peritoneal abrazyon oluşturuldu. Yanlışda belirtilen şekilde ajanlar intraperitoneal olarak uygulandıktan sonra batın periton, cilt altı ve cilt birlikte 4/0 ipek sütürlerle devamlı olarak şekilde kapatıldı.

4.4 Sonuçların Değerlendirilmesi

Operasyondan 7 gün sonra genel anestezi altında, grupları bilmeyen ayrı bir cerrah tarafından her iki kosta yayının altında olacak şekilde ters U kesi ile batın açıldı ve ciddiyetine göre adezyonlar 4 grupta derecelendirildi.

<table>
<thead>
<tr>
<th>Yapılandırma derecesi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Çalışma sonucunda her grupta elde edilen yapışıklık dereceleri arasındaki farklar, Mann-Whitney U testi ile değerlendirildi. Veriler ortalama değer ± Standart Sapma (S.S.) olarak verildi. Verilerin analizi Windows için SPSS ver.
11.0 programı kullanılarak yapıldı. p değeri <0,05 olanlar anlamlı, p değeri<0,001 olanlar yüksek anlamlı olarak kabul edildi.

4.5 Histopatolojik inceleme

Adezyonlar, yapısal ve meydana geldiği yüzeyleri de içine alacak şekilde çıkarıldı. Bu dokulardaki VEGF reseptör düzeyinin belirlenmesi ve immunohistolojik inceleme için %10 formaldehit içinde takibe alındı. %10 formaldehit içinde tesbit edilen dokulardan tam kat kesitler alınarak standart takibe alındı. Parafine gömülen dokulardan 5 mikron kalınlığında kesitler elde edildi. İmmunohistokimyasal boyama ile boyanarak ışık mikroskobunda VEGF reseptör düzeyleri subjektif olarak değerlendirildi.
5. BULGULAR

Yapışıklık gelişimi yönünden grupların yapışıklık dereceleri Tablo-5’de gösterilmiştir. Yapışıklık derecesi ortalama değerleri Şekil-10 da belirlemiş olup, yapışıklık ortalamaları arasındaki farkların istatiksel değerlendirilmesi ise Tablo-6 da görülmektedir.

Tablo-5: Yapışıklık derecelerinin gruplara göre dağılımı

<table>
<thead>
<tr>
<th>Yapışıklık dereceleri</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grup 1 (n=10)</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Grup 2 (n=10)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Grup 3 (n=10)</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Tablo-5 de görüldüğü gibi, Grup 1’de yapışıklık derecesi 0 ve 1 olan hiç rat yokken, 2 olan 5 rat, 3 olan 5 rat vardı. Grup 2’de, yapışıklık derecesi 0 olan hiç yokken , 1 olan 1 rat varken, yapışıklık derecesi 2 olan 4 rat, derecesi 3 olan 5 rat vardı. Grup 3’de, yapışıklık derecesi 0 olan 5 rat, 1 olan 4 rat, 2 olan 1 rat varken, yapışıklık derecesi 3 olan hiç rat yoktu .
Şekil-10: Yapı sıkılık derecesi ortalama değerlerinin gruplara göre dağılımı

Şekil-10’da da görüldüğü gibi, yapı sıkılık derece ortalama değeri Grup 1-2’de en yüksek, Grup 3 ise en düşük olarak bulundu.

Tablo-6: Grupların yapı sıkılık dereceleri ortalamaları arasındaki farkların istatiksel olarak değerlendirilmesi

<table>
<thead>
<tr>
<th>Grup 1</th>
<th>Grup 2</th>
<th>Grup 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>p>0.5</td>
<td>p>0.5</td>
<td>p>0.5</td>
</tr>
<tr>
<td>p>0.5</td>
<td>p=0.001</td>
<td></td>
</tr>
<tr>
<td>p<0.005</td>
<td>p=0.001</td>
<td></td>
</tr>
</tbody>
</table>
Yapışıklık gelişimi, yapışıklık derecesi açısından kontrol grubu ile intraperitoneal ilaç uygulanan grup (Grup III) kıyaslandığında istatiksel olarak yüksek anlamlı derecede fark vardı (Tablo-6). Buna göre bevacizumab uygulanan ratlarda yapışıklık gelişimi kontrol grubuna göre anlamlı derecede azalmaktaydı. Yapışıklık gelişimi yapışıklık derecesi açısından grup 1 ve grup 2 arasında istatiksel olarak anlamlı bir farklılık yoktur.

Deney sonrasında ratlarda meydana gelen yapışıklıklar ile birlikte bunların dereceleri ve görünümleri gösterilmiştir (Şekil 11-14).
Şekil-12: Yapı标准化 derecesi 1 olan iki ratın görünümü (A,B)
Şekil-13: Yapısallık derecesi 2 olan bir ratın görünümü

Şekil-14: Yapısallık derecesi 3 olan bir ratın görünümü
Çalışmamızda çıkarılan adezyon dokusunun immunohistokimyasal incelenmesi sonrası intraperitoneal bevacizumab uygulanan grup ile kontrol grubu ve % 0.9 NaCl uygulanan grup arasında VEGF reseptör düzeyleri ve vaskülerizasyon açısından anlamlı oranda fark olduğu gözlemdi (Şekil 15,16). Grup 3’te immunohistokimyasal inceleme sonrasında VEGF düzeyleri belirgin şekilde azalmıştı. (Şekil 16)

Şekil 15: Yapısal dokusunda damarsal yapılar ve VEGF reseptör düzeyleri

Şekil 16: Bevacizumab uygulanan ratlardaki yapısal dokusunu immunohistokimyasal inceleme sonrası görünümü
6. TARTIŞMA

Wiebel ve Majno tarafından trafik kazalarında hayatını kaybedenlerde yapılan otopsilerde daha önce cerrahi işlem geçmişlerin % 67’sinde adezyon saptanmıştır. Bu rakam majör cerrahi geçmişlerde %76 iken bir çok ameliyat geçirenlerde % 93’e kadar yükselmiştir (2).

Yine benzer yapılan bir çalışmada; en az bir karnın ameliyatı geçmişlerin %93’ünde adezyon saptanırken ameliyat geçmemiş olguların % 10.4’ünde (%9.5 inflamatuar, %1 konjenital) adezyon saptanmıştır (7). İnflamasyona bağlı yapışıklıkların çoğunluğu akut apandisit (% 42) ve divertikülite bağlı (%14.5), diğer nedenler arasında kolesistit ve Crohn hastalığı vardır (25). Yapışıklık ile ilişkili komplikasyonlara maruz olmayan hastalar için tekrar operasyon gerekliği durumunda yapışıklık varlığı operasyon zamanını uzatabilir veya barsak, mesane, kan damarları ve diğer bölgelerdeki yapışıklıklara bağlı yaralanma riskini artırırlar. İntraabdominal adezyon toplumsal bütçeler için yüksek maddi yükse sebebi olmaktadır. Yapışıklıklar ile ilişkili olarak toplam maliyet değerlendirildiğinde yılda 1.2 milyon dolardır (178).

Karn içi yapışıklıklar, periton veya barsağın serozal yüzeyine travma, yabancı cisim reaksiyonu ve iskemi sonucunda geliştiğine inanılmaktadır (7,25). Bu olaylar trombosit birikimi, kinin ve histamin salınımı, vasküller permabilitede artış, peritoneal boşluğa sıvının eksudasyonu ve koagülasyon oluşumu ile ilişkilidir. Mast hücrelerinin
yıkılması ve vazoaktif aminlerin alınması kan damarlarının permeabilitesini artırır ve zengin bir eksüda alınmasını uyarır. Koagulum oluşumunu, fibrin ve fibrin ağı oluşumu takip eder. 72-96 saat içinde fibrinolitik sistem aktive olursa bu fibrin eritilir. 72-96 saatten uzun süre çözülmeyen fibrinöz yapısalıklarda fibroblastik dönüşüm ve peritoneal yapışıklık gelişimi ile sonuçlanır (179).

Adezyon gelişimini önlemek için yapılan bütün büyük girişimler 1942 yılında 5 başlık altında toplandı ve bunlar hala günümüzdeki araştırmaların temelini oluşturmaktaadır (180).

Bu girişimler:
1. Başlangıçta peritoneal hasarı önlemek ya da sınırlırmak;
2. Seröz eksudanın koagülasyonunu önlemek;
3. Biriken fibrini uzaklaştırmak ya da eritmek;
4. Yeni mezotelyal hücreler oluşana kadar fibrin kaplı peritoneal yüzeylerin birbirine olan temasını engellemek
5. Fibroblastik proliferasyonun inhibisyonunu sağlamak.

Adezyonların önlenmesindeki en önemli faktör serozal zedelenmeden sakınma veya en az düzeyde tutmaktır. Serozal zedelenme doğrudan olabileceği gibi, kaba cerrahi teknik, doku ve organların gereken fazla travmatize edilmesi, ameliyat ışıkları altında dokuların uzun süre bırakılmaları gibi indirekt yollardan da olabilir. Bu nedenle kibar, dokuya saygı bir cerrahi tavır sergilenmelidir.

Çoğu deneySEL ve klinik çalışmalarla, karın içi yapışıklık gelişimi engellemek için çeşitli ajanlar kullanılmıştır. Bu ajanlar IL-10, kortikosteroidler, non-steroidal anti-inflamatuar ilaclar, ringer laktat solüsyonu, dextran, hiyaluranik asit ve çeşitli sınırlayıcılar kullanılmıştır. Bu ajanlar, yapışıklık oluşumundaki önemli biyokimyasal
ve selüler olguları direk etkilemekte. Bu ajanların bazılarının adezyonun vasfını ve sayısını azalttığı gösterilmiştir. Fakat bununla birlikte etkili olamamışlardır ve bir kısmının da etki mekanizması tam anlaşılamamıştır.

Ayrıca Mitomycin C, Hylan GF-20 ve Bal ile yapılan çalışmalarda yalnız başlarına kullanımlarına yapışıklık gelişimi önemli oranda azaldığı tespit edilmiş ancak adezyon gelişimi tamamen engellenememiştir.

Ringer laktat, adezyon formasyonunun önlemede oldukça sık kullanılan bir solüsyon olmasına rağmen etki mekanizması tam bilinmemekle birlikte, zedelenmiş serozal yüzeylerin birbiriyle temasını önleyerek, fibrin ve fibrinöz eksudanın dilsyonyu sağlayarak etki ettiği düşünülse de pek başarılı sonuçlar alınamamıştır.

VEGF, bilindiği gibi potent anjiogenik sitokin olup yapışıklık oluşumunda rol oynamaktadır. Belki bu rolü operatif doku yaralanmasının olduğu alanda yeni damar oluşturmasyla rol oynamaktadır. Bundan başka, VEGF’in doku onarım sürecinde özellikle erken inflamattuar cevapta önemli bir rolü vardır. VEGF’in daha sonraki selüler yerdeğiştirmeye ve proliferasyon için gerekli olan fibrinden zengin matrix depolanması kolaylaştırmasında ve peritoneal yapışıklık gelişiminde rol oynadığı sanılmaktadır (181).

Son zamanlarda, malign hastaların tedavisinde spesifik monoklonal antikorlarla VEGF’in nötralizasyonun güvenilirlüğü ve başarısı heyecan vericidir. İlave
olarak bu tedavinin klinik olarak önemli durumlarda yara iyileşmesini bozmadığı gözlenmiştir.

Yapılan çalışmalarda, VEGF’in ameliyat sonrası yapışıklık oluşumunun erken patogenezisinde ana rol olduğunu göstermiştir. Mast hücreleri operasyon sonrasında peritoneal VEGF düzeylerindeki dalgalanmada sorumlu olduğu gözlenmiştir(180).

Cahill ve ark. yaptığı bir çalışmada; hem mast hücrelerinin hem de VEGF’in postoperatif yapışıklık gelişiminde erken dönemde önemli rol oynadığını ortaya koymuşlardır ve neoplastik olayda seçici anti- anjiogenik inhibitörlerinin gelişen durumuya, anti-adezyon stratejilerini de içine alarak geniş bir rol olayabilecekleri ileri sürülmüştür (182).

Çalışmamızda laparatomize ratlarda intraperitoneal %0.9 NaCl verilen grup ile kontrol grubu arasında ameliyat sonrası yapışıklık oluşumu ile ilişkili anlamlı bir farklılık saptanmazken intraperitoneal Bevacizumab kullanımı ile yapışıklık gelişimi kontrol grubuna göre yüksek anlamlı oranda azaldığını bulduk (p<0.001) (Tablo-6).

Sonuç olarak; günümüzde kolorektal cerrahi tedavisinde kemoterapiye eklenen başarılı sonuçlar alınan Bevacizumab laparotomize ratlarda yapıskılık gelişimini ve VEGF reseptör düzeylerinin belirgin bir şekilde azalttığı tespit edilmiştir. Özellikle kolorektal kanserli hastalarda, cerrahi sonrasında uygulanan kemoterapide yerini almış olup, alınan başarılı sonuçlar mutluluk vericidir.

Muhtemelen Bevacizumab, hasarlı dokuda serbest aktif dolaşan VEGF isoformlarına bağlanarak hem biyolojik aktıvelerini nötralize ederek reseptör sinyal sisteminini inhibisyonuna hem de serbest dolaşan VEGF düzeyleri anlamlı olarak azalmaktadır. Bundan dolayı VEGF reseptör düzeyi down-regülsasyon ile azalmaktadır. VEGF etkisinin veya expresyonun azalması ile sonuçlanmaktadır. Bu durum pozitif feedback mekanizması ile olmakta, bunun sonucunda endotel hücre proliferasyonun azalすぎず düşünülmektedir. VEGF isoformlarının biyolojik aktivitelerinin nötralize olmasına erken dönemde neovaskülerizasyonu önleyip adezyon anjiogenizisini engelleyerek adezyon gelişimini engellediği düşünülmektedir.

Bu çalışma da; histopatolojik olarak reseptör seviyelerindeki azalma ile yapıskılık gelişimi arasındaki negatif korelasyon kurulması literatürde ilktir. Ağı geçen
ajaranın (bevacizumab) yapışıklık önleyici etkisinin doğrulanması ve rutin uygulamaya geçebilmesi için daha kampsamlı çalışmalarla ihtiyaç vardır.
7. KAYNAKLAR

11. Margolin K, Gordon MS, Talpaz M. Phase 1b trial of intravenous recombinant human monoclonal antibody (Mab) to vascular endothelial growth factor (rhuMab VEGF) in combination with chemotherapy (CHR) in patients with advanced cancer (CA); pharmacologic and long-term safety data. Proc ASCO 1999; 18:435-436.

141. Flamme I, Breier G., W. Risau, Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo, Dev Biol 1995; 169: 699–712.

165. Margolin K, Gordon MS, Talpaz M. Phase 1b trial of intravenous recombinant human monoklonal antibody (Mab) to vascular endothelial growth factor (rhuMab VEGF) in combination with chemotherapy (CHrX) in patients with advanced cancer (CA): pharmacologic and long-term safety data. Proc ASCO 1999; 18:435-436.

8.ÖZGEÇMİŞ