T.C.
FIRAT ÜNİVERSİTESİ
TIP FAKÜLTESİ
ANESTEZİYOLOJİ VE REANİMASYON ANABİLİMLİM DALI

DENEYSEL SEPSİS MODELİ OLUŞTURULAN RATLARDA İNTRAVENÖZ İMMÜNGLOBULİN TEDAVISİNİN T HELPER POLARİZASYONU ÜZERİNE ETKİSİ

UZMANLIK TEZİ
Dr. İSMAIL DEMİREL

TEZ DANIŞMANI
Prof. Dr. MUSTAFA KEMAL BAYAR

Bu çalışma Fırat Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi Koordinatörlüğü tarafından 1367 numaralı proje ile desteklenmiştir

ELAZIĞ–2007
DEKANLIK ONAYI

Prof. Dr. …………………………………………………

DEKAN

Bu tez Uzmanlık Tezi standartlarına uygun bulunmuştur.

Prof. Dr. Ömer Lütfi ERHAN
Anesteziyoloji ve Reanimasyon Anabilim Dalı Başkanı

Tez tarafımızdan okunmuş, kapsam ve kalite yönünden Uzmanlık Tezi olarak kabul edilmiştir.

Prof. Dr. Mustafa Kemal BAYAR -------------------------------

Danışman

Uzmanlık Sınavı Jüri Üyeleri

TEŞEKKÜR

Araştırma görevlisi olarak çalıştığım süre boyunca bilgi ve tecrübelerini bizlerle paylaşan ve yetiştirmizde yardımcı olan Anabilim Dalı Başkanımız Prof. Dr. Ömer Lütfi ERHAN’a teşekkür ve saygılarını sunarım.

Uzmanlık eğitimim boyunca ve tezimin hazırlanması sırasında her türlü destek ve yardımlarından dolayı Prof. Dr. Mustafa Kemal BAYAR’a sonsuz teşekkürlerimi sunarım.

Asistanlık görev sürem boyunca desteklerini gördüğüm, yardımlarını esirgemeyen Prof. Dr. S. Ateş ÖNAL’a, Prof. Dr. M. Akif YAŞAR’a, ve Yrd. Doç. Dr. Azize BEŞTAŞ’a teşekkürlerimi sunarım.

Tezimin planlama ve laboratuvar aşamasında yardımlarını esirgemeyen İmmünoloji Anabilim Dalı Başkanı Prof. Dr. Ahmet GÖDEKMİRDAN’a teşekkürlerimi sunarım.

Uzmanlık eğitimim boyunca beraber çalıştığım araştırma görevlisi arkadaşlarına, ameliyathane, Anestezi Yoğun Bakım ve Algoloji kliniği çalışanlarına teşekkür ederim.

Asistanlık görevim boyunca yanında olan ve yardımlarını esirgemeyen eşim Ayşe’ye ayrıca teşekkür ederim.
İÇİNDEKİLER

1. ÖZET ... 1
2. ABSTRACT ... 3
3. GİRİŞ ... 5

3.1. SEPSİS .. 5

3.1.1 Tanımlamalar .. 5

3.1.1.1. Enfeksiyon.. 6
3.1.1.2. Bakteriyemi .. 7
3.1.1.3. Sistemik İnflamatuar Yant Sendromu (SIRS)... 7
3.1.1.4. Sepsis .. 8
3.1.1.5. Ağır sepsis.. 9
3.1.1.6. Septik şok ... 9
3.1.1.7. Çoklu Organ İşlev Bozukluğu Sendromu (Multiple Organ Dysfunction Syndrome, MODS)... 9

3.1.2. İnsidans .. 10

3.1.3. Etiyoloji .. 11

3.1.4. Patogenez .. 12

3.1.4.1. Sitokin Fırtınası ... 14

3.1.5. Klinik Tanı ... 18

3.1.5.1. Sepsisten şüphe edilmesine yarayan semptom ve bulgular.. 19
3.1.5.2. Sepsis tanı kriterleri ... 20

3.1.6. Laboratuvar Tanı .. 21

3.1.7. Prognoz .. 22

3.1.8. Tedavi Yaklaşımı .. 23
3.2. SEPSİSTE İMMÜNOLOJİK FONKSİYONLAR... 27

3.2.1. Sepsisteki İmmünsupresyon Mekanizmaları..................................... 28

3.2.1.1. Antiinflamatuar Sitokinlere Olan Kayma 28

3.2.1.2. Anerji ... 29

3.2.1.3. İmmün Hücrelerin Ölümü.. 29

3.2.2. Lökosit Populasyonları .. 29

3.2.2.1. T Helper Alt Grupları ... 30

3.3. SİTOKİNLER .. 33

3.3.1. Interlökin-4 (IL-4) .. 33

3.3.2. İnterferon-γ (IFN-γ) .. 34

3.4. İNTRAVENTÖZ İMMÜNGLOBULİNLER.. 36

3.4.1. Intravenöz İmmünglobulin Etki Mekanizması 36

3.4.2. Intravenöz İmmünglobulin Kullanım Alanları 38

3.4.3. Tedavinin Komplikasyonları.. 38

3.4.4. Pentaglobin (Pentaglobin®, Biotest Pharma Gmbh, Dreieich, Germany) .. 39

3.4.5. Flebogamma (Flebogamma® 5%, Grifols, USA)............................... 40

3.5. SEPSİSTE UYGULANAN İMMÜNOLOJİK TESTLER 40

3.6. ELISA (ENZYME-LINKED-IMMUNOSORBENT ASSAY).................... 41

3.7. FLOW CYTOMETRY ... 42

3.7.1. Hücre Analizi.. 43

4. GEREÇ ve YÖNTEM.. 44

4.1. DENEY ... 44

4.2. FLOW CYTOMETRY ANALİZİ ... 46
4.3. SİTOKİN ANALİZİ .. 48
4.4. İSTATİSTİKSEL ANALİZ ... 48
5. BULGULAR ... 49
 5.1. CD3⁺ LENFOSİT (TOTAL T LENFOSİT) FLOW CYTOMETRY
 ANALİZ BULGULARI ... 50
 5.2. CD4⁺ LENFOSİT (TH- T HELPER LENFOSİT) FLOW CYTOMETRY
 ANALİZ BULGULARI ... 51
 5.3. CD8⁺ LENFOSİT (TC- T SİTOKSİK LENFOSİT) FLOW
 CYTOMETRY ANALİZ BULGULARI .. 52
 5.4. CD4⁺+26⁺ T LENFOSİT (TH1) FLOW CYTOMETRY ANALİZ
 BULGULARI ... 53
 5.5. CD4⁺+30⁺ T LENFOSİT (TH2) FLOW CYTOMETRY ANALİZ
 BULGULARI ... 54
 5.6. IFN-γ ... 55
 5.7. IL-4 ... 56
6. TARTIŞMA ... 58
7. KAYNAKLAR ... 76
TABLO LİSTESİ

Sayfa no

Tablo 1: Th1 ve Th2 alt grupları arasındaki önemli farklar..32

Tablo 2: IL-4, IFN-γ’ nın önemli özellikleri...35

Tablo 3: Gruplara göre deneklerin ağırlık ortalamalarının dağılımı.........................49
ŞEKİL LİSTESİ

Şekil 1: Sepsis ile ilişkili durumlar .. 6
Şekil 2: Sepsis kaskadı ve evreleri .. 8
Şekil 3: Sepsiste inflamatuar yanıt .. 13
Şekil 4: Sepsiste mortaliteye neden olan patojenlerin dağılımı 22
Şekil 5: IVIG etki mekanizması .. 37
Şekil 6: Deneklerin CD3⁺ lenfosit düzeyleri .. 50
Şekil 7: Deneklerin CD4⁺ lenfosit düzeyleri .. 51
Şekil 8: Deneklerin CD8⁺ lenfosit düzeyleri .. 52
Şekil 9: Deneklerin CD4⁺+26⁺ lenfosit düzeyleri .. 53
Şekil 10: Deneklerin CD4⁺+30⁺ düzeyleri .. 54
Şekil 11: Deneklerin serum IFN-γ düzeyleri .. 55
Şekil 12: Deneklerin serum IL-4 düzeyleri .. 56
Şekil 13: Deneklerin saatlere göre sağ kalım oranları .. 57
<table>
<thead>
<tr>
<th>Kişaltma</th>
<th>Tanım</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>Antikor</td>
</tr>
<tr>
<td>Ag</td>
<td>Antijen</td>
</tr>
<tr>
<td>ARDS</td>
<td>Akut Sıktılı Solunum Sendromu</td>
</tr>
<tr>
<td>AT III</td>
<td>Antitrombin III</td>
</tr>
<tr>
<td>CARS</td>
<td>Kompansatuar Antiinflamatuar Yanıt Sendromu</td>
</tr>
<tr>
<td>CO₂</td>
<td>Karbon dioksit</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktif protein</td>
</tr>
<tr>
<td>CSF</td>
<td>Koloni-stimüle edici faktör</td>
</tr>
<tr>
<td>CVP</td>
<td>Santral Venöz Basınç</td>
</tr>
<tr>
<td>DIC</td>
<td>Damar içi pıhtılaşma sendromu</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoksiribonükleik asit</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme Linked Immuno Sorbent Assay</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence Activated Cell Scorting</td>
</tr>
<tr>
<td>FTIC</td>
<td>Fluorescein İsothiocyanate</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granüloisit- Koloni-stimüle edici faktör</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granüloisit-monosit koloni stimüle edici faktör</td>
</tr>
<tr>
<td>HLA</td>
<td>Human Lökosit Antijen</td>
</tr>
<tr>
<td>ICAM</td>
<td>İntrasellüler Adezyon Molekülleri</td>
</tr>
<tr>
<td>IFN</td>
<td>İnterferon</td>
</tr>
<tr>
<td>IL</td>
<td>İnterlökin</td>
</tr>
<tr>
<td>IVIG</td>
<td>İntravenöz immunglobulin</td>
</tr>
<tr>
<td>Kd</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolisakkarit</td>
</tr>
<tr>
<td>MACS</td>
<td>Magnetic Activated Cell Scorting</td>
</tr>
<tr>
<td>MARS</td>
<td>Miks Antagonistik Yanıt Sendromu</td>
</tr>
<tr>
<td>MEIA</td>
<td>Mikropartikül enzim immün assay</td>
</tr>
<tr>
<td>MOF</td>
<td>Multi Organ Yetmezlik</td>
</tr>
<tr>
<td>MODS</td>
<td>Çoğul Organ İşlev Bozukluğu Sendromu</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodyum Klorür</td>
</tr>
</tbody>
</table>
NK : Naturel Killer
NO : Nitrik Oksit
PAF : Platelet Aktive Edici Faktör
PAI : Plazminojen-aktivatör inhibitör
PCT : Prokalsitonin
PCWP : Pulmoner Kapiller Wedge Basıncı
PE : Phycoerythrin
PGE₂ : Prostaglandin E₂
RIA : Radyoimmünoassay
RT-PCR : Reverse Transcriptase- Polimerase Chain Reaction
SAP : Sistolik arter basıncı
SIRS : Sistemik İnflamatuar Yanıt Sendromu
SOR : Serbest Oksijen Radikalleri
TGF : Dönüşürtücü Büyüme Faktörü
Th : T Hepler
TNF : Tümör Nekroz Faktör
t-PA : Doku Plazminojen Aktivatörü
YBÜ : Yoğun Bakım Ünitesi
1. ÖZET

Enfeksiyona sistemik yanıt olarak tanımlanan sepsis, yoğun bakım unidadarında görülen en sık ölüm nedenleri arasında yer almaktadır.

Bu çalışma, sepsiste gelişen inflamatuar yanıt tedavisinde kullanılan intravenöz immünglobulinlerin (IVIG) T helper (Th) polarizasyonu üzerine olan etkisini araştırmak amacıyla planlanmıştır.

Çalışmaya alınan Wistar-Albino cinsi 30 adet rat rastgele 4 gruba ayrıldı. Grup I, kontrol grubu olarak ayrıldıktan sonra, Grup II, III ve IV’e E. Coli LPS’i intraperitoneal olarak uygulanarak sepsis modeli oluşturuldu. Grup III’e IgM ve IgA ile zenginleştirilmiş, Grup IV’e IgG içeren immünglobulin ilk gün LPS’den 6 saat sonra ve sonraki iki gün intraperitoneal olarak uygulandı. Tüm gruplardaki deneklerden bazal, 24. ve 72. saattte kuyruk veninden alınan kan örneklerinden Flow cytometry yöntemi ile periferik kan lenfosit grupları; ELISA yöntemi ile IL-4, IFN-γ düzeylerine bakıldı, gruplar arası 14 günlük sağ kalm oranı değerlendirildi.

Kontrol grubu ile karşılaştırıldığında, CD4+26+ ve IFN-γ düzeyinin II, III ve IV. gruplarda 24. saatte bazal değere göre azaldığı saptandı. IV. grupta; CD4+26+ düzeyi 24. saatte bazal değere göre azalırken, 72. saatte arttığını saptandı(p<0.05). IFN-γ düzeyleri ise kontrol grubu hariç diğer gruplarda bazal değere göre azaldığı saptandı (p<0.05).
CD4\(^{+}\)+30\(^{+}\) ve IL-4 düzeyinin kontrol grubu ile karşılaştırıldığında tüm gruplarda arttığı saptandı (p<0.05). CD4\(^{+}\)+30\(^{+}\) ve IL-4 düzeyinin kontrol grubu hariç, diğer tüm gruplarda bazal değere göre artmış olduğunu gözlemdi (p<0.05).

Deneklerin 14 günlük sağ kalm oranları; sepsis grubunda 3-5 günler arasında, sepsis + pentaglobin grubunda 5-14 günler arasında, sepsis + flebogamma grubunda 4-9 günler arasında öldüğü saptandı.

Th2 yanıtını ve mortaliteyi azattığını saptadığımız IVIG'lerin, immünomodulatuar etkisinin olduğu ve sepsis tedavisinde adjuvan olarak kullanılabileceği kanaatine varıldı.

Anahtar kelimeler: Sepsis, IVIG, Th polarizasyonu
2. ABSTRACT

The Effects of IVIG Treatment Upon Th Polarization in the Experimental Rat Models with Sepsis

Sepsis defined as sistemic response to infection is the most common cause at death in health care units. In this study use investigate the effect of solution of intravenous immunoglobulins which are used in the treatment of inflammation response on T helper polarization in sepsis.

Thirty Wistar-Albino rats which included to study were randomly separated to 4 groups. Group I is control group and, E. coli LPS were given intraperitoneally to Group II, III, IV and model of sepsis were formatted. Pure IgM and IgA were given intraperitoneally to group III and IgG to group IV at the first day, 6 hours and 2 days after LPS application. Peripheric blood lymphocytes subgroups were analyzed by Flow cytometry and IL-4, IFN-γ levels were analyzed by Elisa methods in the blood samples that were taken veins of tail at the basale 24th and 72th hours and ratio of 14 days surveys were searched.

Levels of CD4^+26^+ and IFN-γ were determined lower at the 24th hours samples than basale levels when compared with control group. In group IV level of CD4^+26^+ were decreased at the 24th hours and increased at the 72th hours according to basale levels. Level of IFN-γ were decreased in all times according to basale levels except control groups.

It was determined that levels of CD4^+30^+ and IL-4 were increased in all groups when compared with control groups.
14 days survey ratios of subjects were determined as 3-5 days in sepsis, 5-14 days in sepsis + pentaglobin and 4-9 days in sepsis + flebogamma groups.

We determined that, IVIG’s which decreased the Th2 response and mortality have immunomodulatory effects and use think that these agents can be useful in the treatment of sepsis.

Key words: Sepsis, IVIG, Th Polarization
3. GİRİŞ

3.1. SEPSİS

Enfeksiyona verilen sistemik inflamatuvar yanıt olarak tanımlanan sepsis, özellikle son yıllarda patofizyolojisi daha iyi tanımlanmış olmasına, antimikrobiyal tedavideki ilerlemelere, tanı yöntemlerinin ve teknolojideki gelişmelere rağmen özellikle şok ve multiorgan sistem yetersizliği ile komplike olduğunda yüksek mortaliteye sahip bir klinik tablodur (1). Son yıllarda tedavideki önemli gelişmeler ile masif hemoraji,majör travma, nekrotizan pankreatit gibi ciddi, tıbbi ve cerrahi durumlarda hastaların kardiyovasküler kollaps, akut sıkıntılı solunum sendromu (ARDS) ya da böbrek yetmezliği nedeni ile erkenden kaybedilmelerini önlemiş, ancak hastanın geç dönemde kaybedilmesine yol açan yeni problemler; ağır sepsis, septik şok ve sonrasında çoklu organ disfonksiyon sendromu (MODS) ortaya çıkmıştır (2). Şiddetli sepsis yoğun bakım ünitelerindeki sık ölüm nedenleri arasında yer alır. Sepsisin patofizyolojisinin anlaşılması, değişik tedaviler ve daha iyi yoğun bakım desteği'nin ölüm oranını azaltmasına rağmen, halen dünya'da ölüm sebeplerinin başında sepsis gelmektedir (3).

3.1.1 Tanımlamalar

Mortalitesi oldukça yüksek olan sepsis ve ilişkili durumlar 1991 yılına kadar bakteriyemi, septisemi, sepsis, sepsis sendromu ve septik şok gibi çeşitli tanımlamalar ile ifade edilmiş, bu terimler genellikle birbirlerinin yerine
kullanılmış, sepsis ve ilişkili durumların yeterince anlaşılamasına ve özellikle de klinik çalışmaların yorumlanmasında ciddi kargaşaya yol açmıştır (4).

![Şekil-1: Sepsis ile ilişkili durumlar (4).](image)

3.1.1.1. Enfeksiyon

Mikroorganizmaları ya da bu mikroorganizmaların normalde steril olan konak dokusundaki invazyonuna karşı vücudun geliştirdiği inflamatuar cevapla karakterize mikrobiyal bir oluşumdur. Semptomatik, asemptomatik, subklinik olabilir (4).
3.1.1.2. Bakteriyemi

Kanda canlı bakterilerin bulunmasına denir (viremi, fungemi, parazitemi vb.). Kültürle doğrulanabilir. Ancak, bu olay endokardit ya da birkaç intravasküler enfeksiyon dışında geçici bir süreçtir (4).

3.1.1.3. Sistemik İnflamatuar Yanıt Sendromu (SIRS)

Konsensus toplantısında yeni terim olarak sistemik inflamatuar yanıt sendromu (SIRS), enfeksiyöz veya nonenfeksiyöz bir tetikleme mekanizmasıyla ortaya çıkan sistemik inflamatuar yanıtı tanımlamak için kullanılmıştır. Her enfeksiyon SIRS’a neden olmaz. SIRS tablosunda enfeksiyon varlığı şart değildir. SIRS oluşumuna neden olan nonenfeksiyöz hastalıklar arasında, pankreatit, iskemi, travma, hemorajik şok, yanık, TNF’ün haricen kullanılması gibi etkenler yer almaktadır.

SIRS tanıında yer alan kriterler aşağıda sıralanmıştır. Bunlardan en az ikisinin bulunması ile tanı konulmaktadır;

1- Vücut ısısının 38 °C den yüksek veya 36 °C den düştüğü,
2- Kalp hızının 90/dk’ dan daha fazla olması,
3- Solunum sayısının 20/dk’ dan daha fazla veya arteriyel CO₂ basıncının 32 mmHg’ dan daha düşük olması,
4- Lökosit sayısının 12000/ mm³’ den yüksek veya 4000/ mm³’ den daha düşük sayıda olması, veya genç hücre formunun %10’ dan fazla bulunması (4).
3.1.1.4. Sepsis

3.1.1.5. Ağır sepsis

Sepsis tablosu ile birlikte organ disfonksiyonu, hipoperfüzyon bulguları (laktik asidoz, oligüri, mental durumda akut değişiklikler) ya da sepsisin indüklediği hipotansiyon (Sistolik arter basını (SAP) < 90 mmHg ya da SAP’ ta 40 mmHg’ lik bir azalma) bulunması durumudur.

- Hipoksemi: PaO₂’ nin 75 mmHg’ nın altında olması,
- Oligüri: İdrar çıkışının 30 ml/saatin altında olması,
- Laktik asidoz: Serum laktatın 2 mmol/l’ nin üzerinde olması,
- Mental durumda bozulma: Glasgow Koma Skoru’ nun 3’ ün üzerinde olması (Hasta sedatize edilmiş olmamalı) (4,5).

3.1.1.6. Septik şok

Yeterli sıvı resüsitasyonu, inotropik ve vazopressör desteği karşı hipotansiyon ve hipoperfüzyon bulgularının varlığı, mental durumda bozulma, laktik asidoz ve oligürinin yer aldığı klinik tablodur (4,5).

3.1.1.7. Çokul Organ İşlev Bozukluğu Sendromu (Multiple Organ Dysfunction Syndrome, MODS)

SIRS gelişen bir hastada birden fazla vital organ sisteminde işlevsel bozukluğu görülmesi olarak tanımlanmıştır. Desteklenmediği takdirde homeostazın sürdürülmesi olanaksızdır. Primer ve sekonder olarak ikiye ayrılır. Primer MODS, iyi bilinen ve konağa doğru dan hasar veren spesifik bir olaya bağlı olarak gelişirken, sekonder MODS ise spesifik bir olaya direkt yanıt olmaktan çok konağın anormal sistemik yanıtına bağlı olarak gelişir. Sekonder MODS, SIRS’in
çok şiddetli inflamatuar yanıt ve ölüme yol açan son basamağıdır. MODS’da işlev bozukluğu tüm organlarda gelişebilir ve akut akciğer hasarı, akut tubuler nekroz, prerenal azotemi, izole trombositopeni veya yaygın damar içi pıhtılaşma sendromu (DIC), metabolik ensefalopati, akut non-enfeksiyöz hepatit, ileus, adrenal yetmezlik ile rabdomyoliz gibi klinik sendrom ve bozukluklarla kendini gösterebilir (4-8).

3.1.2. İnsidans

Sepsis gelişen hastalarda, genellikle altta yatan başka bir hastalık eşlik etmekte ve klinik bulgularda en az sepsis kadar altta yatan hastalığa sorumlu olabilmektedir. Bu durum, sepsisin tanı ve insidansının tam olarak saptanmasını güçleştirmektedir. Hastalığın ileri dönemlerinde, uygulanan tedavinin giderek agresif hale gelmesine rağmen, sepsis insidansı ve mortalitesi hastanelerde halen yüksek olarak bulunur (2, 9, 10).

Sepsis bildirimi zorunlu olan bir enfeksiyon hastalığı olmadığınıından sepsis ve sepsise bağlı mortalite konusunda gerçek verileri sunmak güçtir. Amerika Birleşik Devletleri istatistik verilerine göre sepsis 10. sıradaki ölüm nedenidir ve yılda her 1.000 hastadan 3’ü sepsis tablosuna girmektedir. Dünya’da yaklaşık olarak her gün 1.400, yılda 18.000.000 bireyden fazlası sepsisten ölmektedir. Halen koroner yoğun bakım dışındaki yoğun bakım ünitelerinde, ölümlerin en sık nedeni olmaya devam etmektedir. Ülkemizde sepsisin insidansı ve mortalitesi hakkındaki bilgiler yetersizdir. Mortalite oranları, SIRS’tan ağır seyreden MODS’a kadar giderek artmaktadır (11-13).
3.1.3. Etiyoloji

Sepsis tablosu bakteriler, virüsler, mantarlar, parazitlerden kaynaklanabileceği gibi, travma ve pankreatit gibi nonenfeksiyöz olaylarla da gelişebilmektedir. Olguların arasında, etken gösterilememesine karşı grubun çoğunluğunun antibiyotik tedavisine yanıt vermesi, bu hastalarda da etkenin sıklıkla bakteriyel olduğunu düşündürmektedir. Son yıllarda gelişen tanı ve tedavi amaçlı girişimsel teknikler, dış ortama duyarlı olan dokular için zedeleyici ortam oluşturmakta ve sepsise zemin hazırlamaktadır.

Etken olarak antibiyotik çağından önce Gram (+) bakteriler ön planda iken, antibiyotiklerin yaygın kullanımı ile Gram (-) bakteriler ön plana geçmiştir. Son yıllarda özellikle immunosupresif hastalarda kandida enfeksiyonlarına sık rastlanmaktadır. Hastane dışı kaynaklı vakalarda en sık neden üriner enfeksiyon iken hastane kaynaklı vakalarda alt solunum yollarıdır (14, 15).

Etken mikroorganizmalar ve sıklıkları şu şekildedir

1-Gram (-) bakteriler: E.coli, Klebsiella, Proteus, Enterobacter, Pseudomonas (%50-60)

2-Gram (+) bakteriler: Stafilococcus aureus, Streptococcus pneumonia, Stafilococcus epidermis (%35-40)

3-Mantarlar: En sık kandida olmak üzere (%3-5)

4-Bunların yanı sıra virüsler, riketsialar da etken olabilir (14, 15).
3.1.4. Patogenez

Moleküler biyoloji alanındaki gelişmeler, sepsis oluşturan patolojik olayların birçokunun anlaşılması yardmcı olmuştur. Araştırmacılardan, konağın enfeksiyonu karşı pasif kalmadığını, geniş spektrumlu, sonucu hasar oluşturan endojen infamatuar mediatörler salıncığını fark etmişlerdir. Yapılan çalışmalarda elde edilen sonuç, enfeksiyon eradik edildikten sonra da klinik yanıtın devam ettiği ve bunun artmış mortalite ile ilişkili olduğu (16, 17).

Sekil-3: Sepsiste inflamatuar yanıt; makrofajlar ve dendritik hücreler, bakteri invazyonu ve CD-4 T tip 1 hücrelerinden salınan IFN-γ gibi sitokinler yolu ile aktive olurlar. Alternatif olarak, CD-4 T hücrelerinden anti-inflamatuar profile sahip olanlar (tip 2 T helper hücreleri (Th2)) IL-10 salgularlar ve makrofaj aktivasyonunu baskılarlar. CD-4 T hücreleri makrofaj ve dendritik hücrelerin stimülasyonu yolu ile aktive hale gelir. Örneğin, makrofajlar ve dendritik hücreler IL-12 salgularlar. Bu sitokin de inflamatuar sitokinleri salgılamak üzere, CD-4 T hücreleri aktive eder (tip 1 helper T hücreleri (Th1)). Birden fazla faktöre bağlı olarak (organizmanın tipi, enfeksiyon yeri) makrofajlar ve dendritik hücreler, anti-inflamatuar ya da inflamatuar sitokinlerin indüksiyonuna ya da sitokin üretimnin global azalmasına (anerji) neden olabilirler (1) (Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. The New England Journal of Medicine 2003;348:138-51).

3.1.4.1. Sitokin Fırtınası:

salgılanan sitokinlerin önemli bir bölümü interlökinler olup başlıca görevleri immün sistem hücrelerini uyarmaktır. Rekombinant deoksiribonükleik asit (DNA) teknolojisi ile 100’den fazla sitokin tanımlanmıştır ve çoğu hakkında henüz yeterli bilgi bulunmamaktadır. Aktive olmuş T lenfositler tarafından sentezlenen sitokinlere lenfokin, aktive monosit ve makrofajlar tarafından sentezlenen sitokinlere monokin ve lökositler arasında iletişim sağlayan sitokinlere de interlökin (IL) denilmektedir. Kemotaktik etkiye sahip olanlar ise ayrıca kemokin olarak adlandırılırlar (20, 21).

Sitokin ailesi içerisinde,

1. Sitokin süper ailesi
2. İnterlökinler
3. Koloni-stimüle edici faktörler (CSF)
4. İnterferonlar (IFN α, β, γ)
5. Dönüşürtücü büyüme faktörleri (TGF)
6. Tümör nekroz faktör (TNF α, β) yer alır (20, 21, 22).

Sitokinlerin genel etkileri:

1. Lenfoid ve diğer bazı hücrelerin çoğalma ve farklılaşmasını sağlamak,
2. İmmün cevabı şiddetlendirmek veya azaltmak suretiyle regüle etmek,
3. İnflamasyon olaylarına katılan hücreleri aktive etmek, reaksiyon yerine toplayıp orada tutmak ve çeşitli biyolojik etkinlik göstermek,
4. Kemik iligiine etki ile hematopoetik regülasyona katılmak,
5. Ateş ve akut faz cevabı oluşturmak,
6. Antiviral etkinlik oluşturmak,

Sitokinler esas olarak iki ana grup altında toplanabilir (20, 21).

1. İmün yanıtın indüksiyonu ile ilgili olanlar;
 a) T helper-1 (Th1) hücreleri ve hücre aracılı olaylar (IL-2, TNF-β, IFN-γ)
 b) T helper-2 (Th2) hücreleri ve antikor aracılı olaylar (IL-4, IL-10, TGF-β)

2. İmün/ inflamatuar yanıtın efektör fazı ile ilgili olanlar;
 a) Proinflamatuar sitokinler (TNF-α, IL-1, α-kemokinler, β-kemokinler)
 b) Antiinflamatuar sitokinler (TGF-β, IL-4, IL-10, IL-13)

Sepsiste organizmada görülen hemodinamik, metabolik ve immün değişiklikler hücreler arası sinyal iletirol alan mediatörler ve sitokinler aracılığı ile oluşur. Sepsiste doğal immün yanıtın kontrolsüz bir şekilde aktivasyonu ile makrofaj, endotel ve epitel hücrelerinin lipopolisakkarit veya bakteriyel ürünleri spesifik reseptörleri ile tanımlanı, sitokin kaskadının tetiklenmesi ile sonuçlanır. Aktive monosit ve makrofajlar, sitokin yanıtını harekete geçiren en önemli mediatör olan TNF-α salgılarlar. Monosit, makrofaj ve endotel hücrelerinden salgılanan TNF-α’ya IL-1, IL-6, IL-8, SOR, PAF ve NO salınımı eklenir. Proinflamatuar sitokin salınımlını endotel hasar, kompleman ve koagülasyon kaskadının aktifleşmesi izler ve hastada vazodilatasyon, sistemik hipotansiyon, kapiller permeabilitelitte artış ve ödem gelişir. İnflamatuar yanıtın aşırı olmasıyla sepsis, MODS ve hatta ölüm gelir (22, 23).

Son zamanlarda sepsiste sitokin kaskadının sadece aşırı inflamatuar yanıt olan SIRS’tan kaynaklanmadığı ve inflamatuar yanıt kontrol eden antiinflamatuar
bir yanıtın olduğu düşünülmektedir. Bu yanıtın amacı kontrolsüz inflamasyon nedeniyle oluşacak doku hasarının önlenmesi olup kompansatuar antiinflamatuvar yanıt sendromu (CARS) olarak adlandırılmıştır. CARS asıl olarak IL-10, TGF-β ve PGE₂ ile başlatılır, monositler deaktive olur, antijen tanma aktiviteleri azalır, TNF-α, IL-6, IL-8 ve IFN-γ gibi proinflamatuvar sitokinlerin salınımda azalma olur. SIRS ve CARS tablolarının aynı anda olması durumu ise miks antagonistik yanıt sendromu (MARS) olarak adlandırılmaktadır (24, 25).

Sepsiste proinflamatuvar sitokinlerin ön plana çıkması sitokin fırtınası ile antiinflamatuvar sitokinlerin ağır basması immünsupresyon ile karşımıza çıkmaktadır. Aslında her iki durumda zaman içerisinde sepsiste gelişebilmektedir. Antiinflamatuvar yanıt sepsisin başlamasından bir süre sonra gerçekleşmekte ve hastalarda immünsupresyon kliniği, geç tip hipersensitivitenin kaybı, enfeksiyonları sınırlayamama ve nozokomiyal enfeksiyonlara yatıklıkla kendini göstermektedir. Bu nedenle, sepsiste immünsupresyonun kompansatuar bir olay değil primer bir yanıt olarak karşımıza çıktığından sözedilebilir (9, 26).

CD4 (+) T lenfositlerin, Th1’e farklılaşarak inflamatuvar sitokinlerin salıverilmesine, Th2’lere farklılaşarak ise antiinflamatuvar sitokinlerin salıverilmesine yol açtıkları gözönüne alındığında, sepsiste gözlenen immünsupresyonun mekanizmasında Th1’lerden Th2’e kayma önem kazanmaktadır (27, 28). Yapılan klinik çalışmalarında sepsiste Th’daki kayma henüz yeni gösterilmekle birlikte; literatürde patojenin tipi, miktarı ve enfeksiyonun yeri gibi bileşenlerin, Th’daki kaymanın gerçekleşmesindeki olması etkilerinde söz edilmekte olup henüz CD4 (+) T hücrelerinin Th1 veya Th2
yanıtlara yönelmelerindeki mekanizmanın ise tam olarak açıklanamadığı ortaya konmuştur. Th2 yanıtlarındaki artış sepsiste mortalite üzerine etki etmektedir; Th2 yanıtlarının Th1 yönüne, yani kaymanın ters çevrilmesinin mortaliteyi önlediği ve antiinflamatuar sitokinler içinde bilinen IL-10’nun prognostik faktör olarak şiddetli sepsiste kullanılabileceğini gösterilmiştir (27, 28).

3.1.5. Klinik Tanı

Sepsis ve ilişkili tablolar, aynı hastalığın ilerlemekte olan evrelerini, enfeksiyondan çok konakçının enfeksiyona karşı artan yanıtını tanımlamaktadır (29, 30). Endojen mediatörler ile enfeksiyona sistemik yanıt sonrası organlarda generalize inflamatuar reaksiyon oluşmakta, giriş yerinden end-organa varan disfonksiyon ve/veya yetmezliğe kadar ilerlemektedir (9). İnflamatuar yanıtın oluşmasında rol alan çeşitli endojen molekülerin etkileri ve birbiriyle etkileşimi sonucu ortaya çıkan tablo her hastada farklı olabilir ve oldukça karmaşıktır.

Sepsis riskinin yüksek olduğu durumlar şöyle sıralanabilir:

1-Enfeksiyona neden olabilecek girişim yapılanlar,
2-Travma veya cerrahi operasyon geçiren veya yanıklı hastalar,
3-İmmün sistemi baskılayacak tedavi alanlar,
4-İmmün sistemi baskılayan kronik durumlar,
5-Damar içi veya üriner kateter varlığı.

Klinik ve laboratuvar parametrelerinin sepsis için spesifitesi ve sensitivitesi olmaması nedeni ile, enfeksiyöz etiyolojinin erken bir parametresinin kullanılması gerekebilir. Erken tanı spesifik tedavi yöntemlerinin uygulanmasını sağlar.
3.1.5.1. Sepsisten şüphe edilmesine yarayan semptom ve bulgular.

1) Klinik bulgular

- Ateş/hipotermi
- Açıklanamayan taşikardi
- Açıklanamayan takipne
- Periferik vazodilatasyona ait bulgular
- Açıklanamayan şok
- Mental durumda değişiklik

2) İnvasif hemodinamik monitorizasyon bulguları veya laboratuvar parametreleri

- Düşük sistemik damar direnci/yüksek kalp debisi
- Artmış oksijen tüketimi
- Lökositoz/nötropeni
- Açıklanamayan laktik asidoz
- Böbrek ya da karaciğer testlerinde açıklanamayan değişiklikler
- Trombositopeni/ DIC
- Artmış prokalsitonin düzeyi
- Artmış sitokin, C-reaktif protein (CRP) düzeyi

Ayrıca fizik ve laboratuvar bulgularının yanında hemodinamik instabilite, arteriyel hipoksemi, oligüri, koagülopati ve karaciğer fonksiyon testlerinde değişiklikler gibi organ işlev bozukluklarının göstergeleri de eklenmiştir (4, 7).
3.1.5.2. Sepsis tanı kriterleri:

Dökümente edilmiş veya şüphe edilen enfeksiyon ve aşağıdakilərden bazılər şunlardır;

1) Genel değişkenler
 - Hipo veya hipertermi varlığı (Ateş > 38° veya< 36°).
 - Kalp hızı (>90/dk veya yaşa göre normal değerin 2 standart deviasyon üstü)
 - Taşipne
 - Mental durum değişikliği
 - Önemli ödem veya pozitif sıvı dengesi (24 saatte 20ml/kg üzerinde)
 - Diyabeti olmayan hastalarda hiperglisemi (plazma glukozu>120mg/dl veya 7.7 mmol/L)

2) İnflamatuar değişkenler
 - Lökosit sayısının >12.000/ml veya <4.000/ml olması
 - Normal beyaz küre sayısı ile birlikte %10’dan fazla olgunlaşmış nötrofiller
 - Plazma CRP düzeyinin normal değerin 2 standart deviasyon üstü
 - Plazma prokalsitonin düzeyinin normal değerin 2 standart deviasyon üstü

3) Hemodinamik değişkenler
 - Arteriyel hipotansiyon (SKB<90mmHg, OAB<70mmHg veya erişkinde SKB>40mmHg veya her yaş için normal değerin 2 standart deviasyon altında)
 - SvO2>%70
 - Kardiyak indeks>3.5L/dk/M
4) Organ işlev bozukluğu değişkenleri

- Arteriyel hipoksemi (PaO₂/FiO₂<300)
- Akut oligüri (idrar miktarı < 0.5ml/kg/saat veya en az iki saat 45ml/saat)
- Kreatinin artışı (kreatinin>0.5mg/dl)
- Koagülasyon bozukluları (INR>1.5 veya aPTT>60sn)
- İleus
- Trombositopeni (trombosit sayısının <100.000/ml)
- Hiperbilirubinemi (plazma total bilirübinin>4mg/dl)

5) Doku perfüzyon değişkenleri

- Hiperlaktatemı (laktat>1mmol/L)
- Kapiller dolmanın azalması (7).

Sürec sistemik inflamasyon olsun veya olmasın enfeksiyon ile başlar, sistemik yant ağır sepsis veya septik şok ile devam eder. Organ disfonksyonu, kardiyovasküler, pulmoner, renal, hemotologik belirtiler ile ortaya çıkabilir. Şok tablosu vazodilatasyon, intravasküler sıvının ekstravazyonu sonucu oluşan hipovolemi ve çeşitli derecelerde miyokardiyal disfonksiyon sonucu oluşur. Akciğerlerde alveol boşluklarını proteinöz bir sıvının doldurması ile ARDS tablosu oluşabilir.

3.1.6. Laboratuvar Tanı

Konsensus kriterlerinin, epidemiyolojik çalışmalarında faydali olmasına rağmen, bu kriter ile klasik bulguları olmayan hastalarda tanı konulması güçtür. Negatif bakteriyolojik sonuç alınması, sepsisi ve/veya enfeksiyonun olmadığını göstermez. Erken sepsis tanısında özellikle klinik semptom ve bulguların
değerlendirilmesi zor olduğunda, laboratuvar testleri daha kesin ve daha hızlı sonuca götürmektedir. Son yıllarda, CRP ve prokalsitonin (PCT) sepsisi taklit eden durumları ayırt etmede yardımcı olduğu düşünülmüştür. Hastalarda izlenen inflamatuar yanıtın enfeksiyöz kaynaklı olup olmadığını belirlemek için erken parametrelerin bulunması önemlidir.

3.1.7.Prognoz

Şekil-4 : Sepsiste mortaliteye neden olan patojenlerin dağılımı (31)

Şok, DIC, ARDS ve diğer organ yetmezliği komplikasyonları geliştğinde ölüm oranı %70-90 arasında değişmektedir. Etkenlere göre de
ölüm oranı farklılık gösterir. En yüksek ölüm oranı P.aeruginosa, veba ve şarbon sepsislerinde bildirilmiştir.

Sepsiste prognozu etkileyen faktörler şöyle özetlenebilir (31);

1. Alttta yatan hastalıklar (nötropeni, hipogammaglobulinemi, diyabet, alkolizm, böbrek yetersizliği, solunum yetersizliği)

2. Yaş

3. Tedavi başladığıında enfeksiyona bağlı komplikasyonların gelişmiş olması

4. Bakteriyeminin şiddeti (polimikrobiyal bakteriyemi)

5. Enfeksiyon kaynağı

6. Enfeksiyonun geliştiği yer (nozokomiyal)

7. Hastanın yattığı servis (YBÜ)

8. Antibiyotik tedavisinin uygunluğu

9. Tedavinin başlamasına kadar geçen zaman

3.1.8 Tedavi Yaklaşımları

Standart sepsis tedavisi; antibiyotik kullanımı, enfeksiyon odağını uzaklaştırılması, destek tedavisi (vazoaktif ilaç kullanımı, mekanik ventilasyon, hemodiyaliz veya hemofiltrasyon, transfüzyon, beslenme) gibi çok yönlü yaklaşımları içermektedir.

Antibiyotik seçimi etken mikroorganizmaya bağlıdır. Ampirik tedavide genellikle dar spektrumu antibiyotikler tercih edilmekte ve spesifik antibiyotik seçimi şüphe edilen odağa göre yapılmaktadır. Antibiyotikler kültür sonucu ve antibiyograma göre değiştirilmelidir.
Hemodinamik destek tedavisi olarak intravasküler volümün yeniden sağlanması ve organ perfüzyonunun yeterli hale getirilmesi amaçlanmalıdır. Septik hastadaki volüm replasmanı, artmış kardiyak atım hacmi ve sistemik oksijen sunumunda iyileşme ile sonuç vermektedir. Sıvı resüsitasyonunun uygun arteriyel basınçları ve organ perfüzyonunu sağlayamadığı durumlarda vazopressör ajanlar tedaviye eklenmelidir (32).

Mekanik ventilasyon, sepsis atağı ve ARDS süresince uygulanan destek tedavisidir. Hemodiyaliz veya hemofiltrasyon ciddi asidemi, hiperkalemi, üremi veya hipervolemi oluşmuş akut böbrek yetmezliği durumlarında uygulanmaktadır.

Hematolojik olarak, ağır DIC tablosu koagülasyon profili ve trombosit sayısı kontrol edilerek trombosit veya taze donmuş plazma transfüzyonu ile tedavi desteklenmelidir.

Enfeksiyon odığının uzaklaştırılmasında perkütanöz kateterler kontrol edilmeli ve apse veya peritoneal kontaminasyon odağının mevcut ise cerrahi yaklaşım ile tedavi edilmelidir.

Yeni tedavi yaklaşımında, sendromun ilerleyiğini durdurmak veya yavaşlatmak amacıyla kullanılan, mikrobiyel toksinleri hedef alan (antiendotoksin antikorlar, IL-1 reseptör antagonist vb.), inflamatuar ağı etkileyen (kortikosteroidler, ibuprofen), koagülasyonu düzenleyen (platelet aktive edici faktör-PAF antagonistleri, AT III, protein C vb), konak savunmasını güçlendiren ajanlar (immünglobulinler vb) yer almaktadır.
Antiendotoksin antikorlar, endotoksine yüksek özgüllükte bağlanıp, etkilerini ortadan kaldıracak düzeyde amaca uygun değildir. Protein veya lipoprotein yapısındaki yeni bazı ajanların, endotoksinin nötralizasyon kapasitesinin yüksek olduğu gözlenmiştir. Bazı araştırmacılar lipid A türevlerinin endotoksin doğrudan nötralize ederek başarılı olabileceğinden hareketle araştırmalarını sürdürmektedir (33).

Koagülasyon ile inflamasyon sistemi arasında kompleks bir etkileşim mevcuttur. Prolenflamatuar sitokinlerin koagülasyon kaskadını aktive etmesi sonucu antikoagulan ajanlardan antitrombin III (AT III) ve protein C düzeyleri azalır. Bunun sonucunda koagülasyon sisteminde dengenin prokoagüan tarafa kaymasına neden olur. AT III ekstrensek yoldaki faktörlerden IXa, Xla, XIIa ya ek olarak faktör Xa, IIa ve plazmini inhibe eder. Koagülasyon ürünlerinden
trombin doku faktörü aktivasyonu yaparak bradikinin üretimine, hipotansiyon ve doku hipoperfüzyonuna neden olur. Yapılan çalışmalarda AT III uygulanan hastalarda DIC süresi ve organ yetmezliği sayısı azalmış, mortalite istatistiksel olarak anlamlı bir düşüş saptanmıştır (40). Protein C, Va ve VIIIa gibi faktörleri inhibe ederek trombin oluşumu sınırlanır. Trombin seviyesi azaldığında inflamatuar, prokoagülan ve antifibrinolitik cevaplar azalır. Endojen aktive protein C nin direkt antiinflamatuar etkilerinin yanı sıra; TNF-α ve IL-1 üretimini azaltarak, endotelde E-selektini bloke ederek lökosit adezyonunu inhibe ederler.

Konak savunmasını güçlendiren ajanlardan, interferon-gama ve intravenöz immünglobulinler mevcuttur. IFN-γ, hayvan gram negatif sepsis modellerinde kullanılmaktadır. Intravenöz immünglobulinler (IVIG), çocuk ve erişkinlerde olmak üzere ağır sepsisin tedavisinde kullanılmaktadır.AMAÇ sepsiste deprese olmuş immünglobulin düzeylerini yükseltmektedir. Sepsisle ilgili son çalışmalarda (41), antibiyotik tedavisi halen değeri korumaktadır. Ne var ki; immün destek tedavisinin de gerekliğine inanılmakta ve IgM ile zenginleştirilmiş immunoglobulinlerin bu tedavi ihtiyacı karşıladığı düşünülmektedir.
Gelecekte tedavi yaklaşımları düzenlenirken, immün statünün değerlendirilmesi, enfekte hastanın immün ve biyokimyasal sınıflaması ve erken müdahale, mekanistik bir tanımlama ve daha homojen gruplar, bir cevabı yok etmekten ziyade modül etmek ön plana çıkacaktır. Kullanılacak monitorizasyon yöntemleri ise; HLA-DR + monosit, Exvivo IL-12 sekresyonu ve TNF, Th1/Th2, CD64⁺ nötrofıller içerecektir.

3.2. SEPSİSTE İMMÜNOLOJİK FONKSİYONLAR

Sepsis immünopatogenezindeki ana rolü endotel hücre aktivasyonu oynamaktadır (19). Endotel hücreleri; aktive yardımcı T (T-helper, Th) hücrelerinden salgılanan interferon-γ (IFN-γ) ve interlökin-2 (IL-2) etkisiyle mononükleer fagositlerden sekrete edilen IL-1, IL-6, IL-8 ve tümör nekroz faktör-α (TNF-α) sitokinleri sonucu aktive olmaktadır. Aktive monosit ve endotel hücrelerinden potent inflamatuvar mediyatörlerin salgılanmasındaki amaç öncelikle savunma mekanizmasına yönelik biyolojik olayların başlamasını indüklemektir.

T helper hücreleri antijenik uyarıyla beraber IL-12 ve IL-4 sitokinlerinin etkisiyle Th1 ve Th2 olmak üzere iki ayrı alt gruba farklılaşır (42). Th1 lenfositleri; IL-2, IFN-γ ve TNF-β salgularak hücresel immün cevabın başlatırken, Th2 lenfositleri IL-4, IL-5, IL-6, IL-10 ve IL-13’ün sentezlenmesinde rol alırlar. Son yıllarda yapılan araştırmalarda Th1 hücresel tip immün cevabın gelişmesinde major rol oynadığı ortaya koyan dominant proinflamatuvar bir sitokin olan IL-18’ in, IL-12’ den bağımsız olarak Th1 proliferasyonuyla IFN-γ sekresyonunu artırduğu ve NK ve Th’ lardan TNF-α sentezlemesini indükleyerek monositlerden de IL-1β ve IL-8 salgılanmasını uyarladığı bildirilmiştir (43, 44). Her
iki grup Th lenfositleri de salgıladıkları sitokinlerin etki mekanizmaları itibariyle antagonistik olarak immün cevabı regüle ederler.

TNF-α, IL-1, IL-6, IL-8 proinflamatuar; IL-4, IL-10, IL-13, TGF-β, koloni stimulan faktörler, çözünür TNF-α reseptörleri ve IL-1 reseptör antagonisleri ise antiinflamatuar mediyatörlerdir. Bu sitokinlerin etki mekanizmaları tam olarak bilinmemekle beraber, özellikle IL-10’nun monosit fonksiyonlarını, T ve B lenfosit proliferasyonlarını inhibe ettiği gösterilmiştir (45, 46). Proinflamatuar sitokinlerin daha fazla olması durumda SIRS ve buna bağlı hedef organlardaki hücrelerde gelişen apopitozis sonucu MOF; antiinflamatuar sitokinlerin daha baskı olması halinde ise klinik olarak immünolojik anerji ve enfeksiyona eğilim görülmektedir (47).

3.2.1. Sepsisteki İmmünsupresyon Mekanizmaları

3.2.1.1. Antiinflamatuar Sitokinlere Olan Kayma

Aktive edilmiş CD4⁺T hücreleri, ya TNF-α, IFN-γ ve IL-2 gibi inflamatuar (tip 1 helper T- cells [Th1]) özelliklere sahip sitokinler ya da IL-4 ve IL-10 gibi antiinflamatuar (tip 2 helper T- cells [Th2]) özelliklere sahip sitokinler sekrete ederler. CD4⁺T hücrelerinin Th1 veya Th2 cevaplarından hangisini vereceğini etkileyen faktörler bilinmemektedir, fakat patojenin tipi, bakteriyel inokülümün büyüklüğü veya enfeksiyonun yeri bu faktörleri etkileyebilir (48). Yanıklı veya travmatı hastalardan elde edilen mononükleer hücreler Th1 sitokin düzeylerini azaltırken IL-4 ve IL-10 Th2 sitokin düzeylerini artırır, sepsisli hastalarda Th2 cevabının tersine dönürlmesi survayyı iyi yönde etkilemektedir (49).
3.2.1.2. Anerji

Anerji antijene karşı bir cevapsızlık halidir. T hücreleri spesifik antijenlere karşı proliferere olamıyor veya sitokin sekrete edemiyorlarsa anerjiktirler. Heidecke ve ark. peritonitli hastalarda T hücre fonksiyonunu araştırmışlar ve Th2 sitokin üretiminde bir artış olmasınız Th1 fonksiyonunda azalma tespit ettiklerinde bu durumun anerji ile ilişkili olduğunu savunmuştur. Dedektif T hücre proliferasyonu ve sitokin sekresyonu, mortalite ile korrelesyon gösterir (50).

3.2.1.3. İmmün Hücrelerin Ölümü

Sepsisten ölen insanlardaki otopsi çalışmalar apopitozise bağlı adaptif immün sistem hücre kayıplarının derin ve progressif olduğunu ortaya koymıştır (51). CD8+ T hücrelerinde herhangi bir kayıp olmasına, NK hücreleri veya makrofajların oluşmasına rağmen sepsis, B hücre düzeylerini, CD4+ T hücre düzeylerini ve folliküler dendritik hücreleri belirgin ölçüde azaltmıştır. Lenfosit ve dendritik hücre kayıpları özellikle önemlidir, çünkü bu durum hayatı tehdit edici enfeksiyonlarda görülür. Sepsis sırasında apopitozise bağlı lenfosit kaybının büyüklüğü, hastalarda daha fazladaki lenfosit sayının yapılmasyyla net bir şekilde görülür (51). B, CD4+ T hücreleri ve dendritik hücre kayıpları srasıyla antikor üretimini, makrofaj aktivasyonunu ve antijen sunumunu azaltmaktadır (52, 53).

3.2.2. Lökosit Populasyonları

Sepsise yol açan tüm mekanizmalar sonucunda, kanda aktive olan monositlerden ve doku makrofajlarından proinflamatuar sitokinlerin
salgılanmasına ve kemik iliği depresyonuna neden olmaktadır (54, 55). Ağır travma hastalarındaki stresle beraber artan proinflamatuar sitokin düzeylerinin etkisiyle oluşan T ve B lenfositlerinin fonksiyonlarındaki depresyonun monosit/makrofaj aktivasyonundaki azalmalar sonucu T hücreleri ile arasındaki etkileşimdeki bozukluğtan kaynaklandığı düşünülmektedir (56).

Travma sonrası aşırı aktivasyon sonucu monosit/makrofajların yaşam sürelerinin kısalıp eliminasyonuyla oluşan immünoparalizinin henüz tam olgunlaşmamış monosit/makrofaj populasyonunun eskilerinin yerini almasına dek 3-5 gün sürdüğü gösterilmiştir (57). Sepsisle komplike travma hastalarında proinflamatuar sitokin salgılanan, HLA-DR ekspresyonu az, antijen sunumunu baskılayan, FcR+ “kızgın makrofaj” (angry macrophage) populasyonunun baskın hale geçip, immunolojik anerjide ve firsatçı enfeksiyonların gelişiminde başrolü oynadıkları düşünülmektedir (58). Travma sonrası erken dönemde gelişen ve enfeksiyonlara eğilimde önemli rol oynadığı düşünülen lökosit HLA-DR ekspresyonundaki bu azalmanın IL-10 etkisiyle oluştuğu ve in vitro olarak anti-IL-10 antikorlarıyla bunun kısmen düzdüğü ortaya konmuştur (59).

3.2.2.1 T Helper Alt Grupları

Kandaki lenfositlerin %35-60 kadarını, heterojen bir popülasyona sahip Th alt grup hücreleri oluşturur (60, 61). CD4⁺ yüzey reseptörü taşıyan subpopülasyon, geç duyarlıktan sorumlu efektör hücreler ve sitotoksik T hücrelerinin olgunlaşmasına yardımcı T hücrelerini kapsar. Bu popülasyonun hücreleri, B hücrelerinin antikor yapan plazma hücrelerine dönmelerini de
indükler. Bu nedenle, CD4⁺ reseptörü taşıyan bu lenfositlere Tḥ indükör hücreleri de denmektedir.

İstirahat halindeki Th hücre Antijenle stimüle edildiğinde hücre, ya IL-12, IFN-γ ya da IL-4 etkisi altında Th1 veya Th2 fenotipi oluşturacak biçimde çoğalır ve farklılaşır. Th1 ve Th2 oran değişir. Böylece bu baskıın sonuçları periferde gözlenebilir (61). Th1 hücrelerinin asıl fonksiyonu, Th1 tipi sitokinler, makrofajların fagositoz ve mikroorganizma öldürme yeteneklerini güçlendirerek, enfeksiyona karşı savunmayı tesis etmektir. Th2 alt grup hücreleri akut ve kronik inflamasyonu ve geç tıpte hücresel hipersensitiviteyi inhibe ederler. Bunlar Th1 hücrelerinin aksine çoğunlukla CD30⁺ yüzey reseptörü taşırlar (60).

Th1 hücrelerinin %77'si sitolitik aktiviteye sahiptir. Buna karşılık, Th2 hücrelerinin sadece %18 kadar sitolitik aktivite gösterir (60). Bu nitelikleri dikkate alındığında, Th2 alt gruplarının esas itibariyle humoral immün cevapların, Th1 alt gruplarının ise, hücresel immün cevapların oluşmasında etkin rol oynadıkları anlaşılmaktadır. Bir Th alt grubunun sentezlediği sitokinler, diğer Th alt grubunun sentezlediği sitokinlerin yapımını baskılayabilir (60, 61).
Tablo-1: Th1 ve Th2 alt grupları arasındaki önemli farklar (62)

<table>
<thead>
<tr>
<th>Sitokin profili</th>
<th>Th1</th>
<th>Th2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-γ</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>TFN-α</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>IL-2</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>IL-3</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>IL-4</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>IL-5</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>IL-6</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>IL-10</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>IL-13</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

Başlıca İşlevi
- Geç tip ası birlik
- B hücre yardımcı, Makrofaj aktivasyonu
- Sitotoksit, Sınırlı B hücre yardımcı ve inhibisyonu

İzotip Ab indüksiyonu
- IgG1
- IgG4

Cevabın yararlı olduğu başlıca haller
- Viral enfeksiyonlar
- Allerji
- Tüberküloz
- Leyişmaniyoz

Cevabın zararlı olduğu başlıca haller
- Artrit, otoimmünite
- Helmint enfestasyonu
- Allograft rejeksiyonu

Başlıca Haller
- Artrit, otoimmünite, Tüberküloz, leyişmaniyoz
- Helmint enfestasyonu, Virus enfs. (kızamık,HIV)
- Allograft rejeksiyonu, Gebelik
- Allerji
3.3. SİTOKİNLER

Sitokinler, içinde 100’den fazla sayıda farklı molekül bulunduğu büyük bir grup oluşturmaktaadır. Bunların bir kısmı henüz tam olarak incelenmemiştir ve bilgilere karşılıklık vardır. Fizyolojik açıdan sitokinlere, hücreler arasında mesaj (sinyal) ileten biyolojik mediyatörler gibi bakılabilir (63).

3.3.1. İnterlökin-4 (IL-4)

Th2 alt gruplarının uretilmesi ve indüklenmesi ile etki gösteren sitokinidir. 4 adet α- helikal yapı içeren sitokin ailesindendir. B hücre uyarıcı faktör 1 (BSF-1) olarak ta bilinir. 20 kd ağırlığında olup kodlayan genler 5. kromozom üzerindeki. Bu bölge IL-3, IL-5, GM-CSF, M-CSF ve M-CSF reseptör genlerini de bulundurduğuundan hemopoezde önemlidir. IL-4’ün esas hücresel kaynağı,
aktive mast hücreleri ve bazofiller kadar Th2 alt gruplarının CD4⁺ T lenfositleridir (22, 64).

IL-4, IFN-γ’nın makrofaj aktive edici etkisini antagonize eder ve böylece hücresel immünite reaksiyonlarının inhibisyonuna yol açar. Bu durum Th2 hücre fonksiyonlarının, immün inflamasyon inhibitörleri gibi işlev yaptığını göstermektedir. Bununla birlikte, IL-4, IgE reaksiyonlarını, mast hücre/eozinofil reaksiyonlarını başlatırken makrofaj bağımlı reaksiyonları baskılar (22, 64).

3.3.2. İnterferon-γ (IFN-γ)

Tip II interferon (IFN) diye de adlandırılan Th hücrelerinden Th1 alt gruplarının oluşmasına neden olan bir sitokindir. Homodimerik bir proteindir. IFN-γ’nın reseptörü, tip II reseptör ailesi özelliğinde iki yapısal açıdan homolog iki polipeptidden oluşur. Hücre içi mikroorganizmalarına karşı hücresel immünitede önemli fonksiyonları vardır. IFN-γ makrofaj aktive eden sitokin olarak, T lenfositleri ile NK hücrelerini aktive eder ve fagosite edilmiş mikroorganizmaların makrofajlarca öldürülmesini sağlar (22, 64, 65). IFN-γ vasküler endoteliyal hücrelerin bir aktivatörüdür. Bununla birlikte nötrofilleri aktive ederek NK hücrelerinin sitolitik aktivitesini uyarır.
Tablo-2: IL-4, IFN-γ’ nın başlıca biyolojik özellikleri (63)

<table>
<thead>
<tr>
<th>Sitokin</th>
<th>Temel kaynağı</th>
<th>Başlıca biyolojik etkinliği</th>
</tr>
</thead>
</table>
| **IL-4** | Th2 hücreleri, timositler, mast hücreleri, bazofiller, NK hücreleri | - Th2 alt grup indüksiyonu
- Th1 alt grup inhibisyonu
- Aktive B hücre çoğalma faktörü
- Sitotoksik T hücre aktivasyonunun artması
- Mast hücrelerinin çoğalma faktörü
- MHC klas II ekspresyonunun artması
- IL-1Ra ekspresyonunun indüksiyonu
- IL-1,6,8, TNF-α ve NO sentezine inhibitör etki |
| IFN-γ | CD8⁺ T hücreleri, Th1 hücreleri, NK hücreleri | - CD4⁺ T hücrelerinin Th1’e diferansiasyonu
- Th1 ve NK hücre aktivitesinin şiddetlenmesi
- Th2 alt grup hücrelerinin inhibisyonu
- Makrofaj ve endotel hücrelerinin aktivasyonu
- CD8⁺ T efektörlerin oluşması
- B hücre proliferasyonu ve farklılaşması
- Sitokin etkilerinin şiddetlendirilmesi/zayıflatılması
- NADPH oksidaz, NO sentaz sentezinin artması
- Lenfosit ve monosit kemotaksisi
- Kaşeksi
- Antiviral etkinlik |
3.4. İNTRAVENÖZ İMMÜNGLOBULİNLER

İmmünglobulin preparatları 35 yıldan beri immün yetmezliklerin tedavisi ve pasif immünizasyonda kullanılmaktadır. Bu preparatların % 95’ini IgG oluşturmakta ve çok az IgA ve IgM içermektedir. İmmünglobulinler önce intramüsküler (IM) olarak hazırlanmış ardından intravenöz (IV) kullanılabilecek preparatlar şeklinde hazırlanmış ve nihayet bunlar subkutan (SC) olarak da kullanılmaya başlanmıştır. Eskiden beri kullandığımız IM preparatlarının tedavide uzun süreli kullanımında, enjeksiyon yerinde ağrı ve apse gelişebilme, emiliminin yavaş olması, anafilaktik reaksiyona yol açması nedeni ile kullanımlarında güçlük yaşanmaktadır. Bugün daha ziyade intravenöz immünglobulin (IVIG) şeklinde hazırlanan preparatlar tercih edilmekte IM olanlar ise pasif immünizasyonda kullanılmaktadır.

3.4.1. İntravenöz İmmünglobulinlerin Etki Mekanizması

IVIG konsantrrelerinin %95 oranında immünglobulin (Ig) G içeren preparatları, ilk olarak humoral immün yetmezlikli hastalarda kullanılmıştır. Ek olarak 1981’ den bu yana vücudun kompleks immünolojik olayları açıklığa kavuştukça kullanımı artmıştır. İmmünglobulinler, günümüzde inflamatuvar hastalıkların tedavisinde kullanılmaktadır (66, 67). IVIG’in potansiyel etki mekanizması çeşitliştir (41); öncelikle immünglobulinin sabitFc parçası ile Fc reseptörlerinin etkileşimi sonucu oluşan kompleman aktivasyonu immün komplekslerin temizlenmesini sağlamaktadır. IgG’nin değişken bölgesi otoantikorların aktivitesini module etmekte ve idiyotipik ağ interaksiyonu yoluya immün regulasyon sağlanmaktadır. IVIG’deki IgG havuzunun antijenik özelliği
çextili mikrobiyal antijenlere karşı etkilidir veya sitokin ve hücre yüzey reseptörleri gibi diğer ağ elemanları ile etkileşir. Ticari preparatların çoğu iyi tolere edilir ve hastalara multi infüzyonlar verilebilir.

IVIG’ in belirgin antiinflamatuar etkisi gözlenmiştir. Bu fenomen, en çok Kawasaki sendromunda belirgindir. ITP tedavisinde Fc reseptör blokajı ile otoantikorlarının duyarlılaştırıldığı trombositlerin tutulumunda azalma sağlanmaktadır. Deney hayvanlarında gösterilen muhtemel bir mekanizma IVIG’ in aktif C3 fragmanlarına bağlanması ile komplemana karşı doku hasarını inhibe etmesidir (68).

Küçük miktarlarda sitokinlere ve reseptörlerine yönelik antikorlar, anti-idiotip antikorlar ve süper antijenlere karşı antikorlar da içermektedir. IVIG’in yarılanma ömrü 3 haftadır. İntravenöz immünglobulinlerin günümüzde immünomodülatuar etkisi tam olarak ortaya konmamıştır (Şekil-5) (69).

Şekil-5: IVIG etki mekanizması (69).
IVIG’nin immünomodülatuar erken dönem etkileri; sırküle otoantikorların nötralizasyonu, makrofajlardaki Fc reseptörlerinin fonksiyonel blokajı, kompleman’ın oluşturulduğu hasarın inhibe edilmesi, immün kompleks üzerine etkileri, proinflamatuar sitokinlerin sentezinin düzenlenmesi, sırküle lökosit fenotiplerinin değiştirilmesini içerir (70). Geç dönem etkileri ise; B hücre klonlarının azaltılması ve antikor sentezinin baskılanması, serum antikor titrelerinde gözlenen spontan fluktuasyonlar üzerine etkisi, sentezlenen sitokin paternini değiştirerek, fonksiyonel T ve B hücre repertuvarını değiştirir.

3.4.2. IVIG Kullanım Alanları

İmmün yetmezlikler, herediter ve metabolik hastalıklar, immünosupresif ilaç ve ajanlar kullanan hastalar, enfeksiyon hastalıkları, hemolitik hastalıklar, otoimmün hastalıklar, travma ve cerrahi girişim, transplantasyon sonrası dönem, diğerleri (intrauterin embriyo atılmasını önleme, steroide bağlı astma v.b.)

3.4.3. Tedavinin Komplikasyonları

Hipotansiyon, pulmoner ve renal disfonksiyon, enfeksiyon, anafilaktik reaksiyon, bulanık, baş dönmesi, baş ağrısı, ateş, kusma, tromboembolik olaylar ve son zamanlarda yayınlanan ve tedavinin kesilmesine yol açan aseptik menenjit.
3.4.4. Pentaglobin (Pentaglobin®, Biotest Pharma Gmbh, Dreieich, Germany)

IVIG benzeri yolla elde edilen antikorlar 1980’lerin ortalarında Pentaglobin adıyla üretilmiştir. Pentaglobin %5’lik immünglobulin preparatı olup, binlerce donörden elde edilen havuzdan üretilir ve %12 oranında IgM içerir.

IgM humoral immünolojik aktivite için önemli antikor sınıfıdır. Dalakta veya lokal olarak lenf nodlarında antijen sunumunun olduğu bölgede, ilk savunma noktasında sentezlenir. IgM molekülleri, bakteriyel patojenlerin eliminasyonu ve bakteri toksinlerinin nötralizasyonu için önemlidir. Tek bir IgM molekülü 10 adet antijen bağlama bölgesine sahiptir ve beş Fc fragmanı içerir, böylece aglutinasyon reaksiyonu ve kompleman aktivasyon yolları açısdan diğer immünglobulin sınıflarından üstündür. IgM molekülü kompleman varlığında bakteriyel hücre duvarında lizisini başlatabilir (41). Yenidoğanlar, bu primer antikor sentezini do novo sentezleyebilir, böylece mikrobiyal patojenlere karşı gelişen ilk konakçı yanıtı IgM’lendir gelir (71).

Pentaglobin, kullanma hazır bir insan immünglobulin preparatı olup, 50 mg protein/ml içerir. Immünglobulin oranı %95’ den az değildir. Pentaglobin esas olarak IgG(%76), yüksek konsantrasyonlarda IgA(%12) ve IgM(%12) içerir. Immünglobulin subgrupları IgG1 %62, IgG2 %25.8, IgG3 %4, IgG4%7.6 oranında bulunur. %5’lik protein solüsyonu, pH 6.8’de iso-onkotik olarak bulunur, %2.5 glukoz ve 78 mmol/l sodyum klorid içerir. Pentaglobin, hiçbir katkı maddesi, stabilizan veya prezervatif içermez. Pentaglobin üretiminde, protein bölümü beta-propiolakton ile modifiye edilir, böylece iyi intravenöz tolerans
sağlanır (non-spesifik kompleman aktivasyonunu tetiklemez) ve immünglobulinlerin biyolojik fonksiyonu (Fc-bölüm fonksiyonu) sağlam kalır.

1 ml solüsyonda; 6 mg IgM, 6 mg IgA, 38 mg IgG, içeren, 10 ml’lik ampül ve 50-100 ml’lik infüzyon şişelerinde kullanıma sunulmuştur.

3.4.5. Flebogamma (Flebogamma® 5%, Grifols, Usa.)

İnsan plazmasından hazırlanan %5’lik IgG içeren ve koruyucu madde içermeyen, sorbitol ile stabilize edilmiş intravenöz kullanım için hazırlanmış immünglobulin preparatıdır. Yüksek pürifiye IgG (≥99) içeren flebogamma içinde IgG’nin subgrupları IgG₁ %70.3, IgG₂ %24.7, IgG₃ %3.1, IgG₄ %1.9 oranında bulunmaktadır. IgM ve IgA oranı < 0.05 mg/ml’dir. %5’lik flebogamma içinde her ml’sinde 50 mg IgG, 50mg D-sorbitol ve ≤6mg/ml propilen glikol içeren preparatları mevcuttur. pH’si 5 ile 6 arasında, osmolaritesi 240-350 mOsm/L arasında değişmektedir. 10-50-100-200 ml’lik infüzyon şişelerinde kullanıma sunulmuştur.

3.5. SEPSİSTE UYGULANAN İMMÜNOLJİK TESTLER

Travmatik olaylar sonucu gelişen immünolojik değişiklikleri ortaya koyarak özellikle politravmatize septik hastalarda yeni immünomodülatör terapötik girişimleri uygulamak amacıyla immünolojik fonksiyonların değerlendirilmesine yönelik testler gittikçe önem kazanmakta, her geçen gün teknolojik gelişmelerle beraber yeni yöntemler ve ticari kitler uygulama alanına girmektedir. Bu yöntemlerden en güncel ve en çok kullanılanları şunlardır:
a) Lökositlerin kuantitatif analizi: Flow Cytometry yöntemi (FACS= Flourescence Activated Cell Scorting), MACS (Magnetic Activated Cell Scorting)

b) Lökositlerin fonksiyonlarına yönelik testler:

Salgılanmış Sitokin tayini: ELISA, RIA, Bioassay

Salgılanmamış İntrasitoplazmik Sitokin Tayini: FACS, RT-PCR (Reverse Transcriptase- Polimerase Chain Reaction)

Lenfosit proliferasyon testleri: T- lenfositleri için Concanavalin (Con-A) veya Phytohemagglutinin (PHA); B-Lenfositleri için Pokeweed Antijeni gibi mitojenlerle uyarlıya yanıtın H3- timidin ile ölçümü

Makrofaj fonksiyon testleri: Neopterin (RIA ile) veya nitrik oksit tayini, Candida fagositoz testi, reaktif oksijen radikallerinin ölçümü

Deri testi (Geçikmiş tip aşırı duyarlılık reaksiyonu)

c) **Akut faz reaktanlarının tayini:** CRP (Nefelometri), Prokalsitonin (RIA, immünoluminometric-assay)

d) **Kompleman ve immünoglobulinlerin tayini:** Nefelometri

e) **Hematolojik fonksiyonların tayini:** Antitrombin-3 tayini, PT, PTT

3.6. **ELISA (ENZYME-LINKED-IMMUNOSORBEND ASSAY)**

Antijen- antikor birleşmesini görünür hale getirmek için, enzimle işaretli antikorlar (işaretli konjugat) kullanılmaktadır. Enzim işaretli konjugat, antijen-antikor kompleksine bağlandktan sonra, ortama konulan substrat yıkmaya uğramakta ve pH değişimine bağlı renk değişikliği oluşmaktadır. Bu renk değişikliği kolorimetrik olarak ölçülenerek kontrollere göre sonuçlar
değerlendirilmektedir. Oldukça duyarlı bir yöntem olup, örnekte az miktarda olan antijen veya antikoru ölçebilmektedir.

ELISA’nın üç değişik yöntemi bulunmaktadır. Bunlardan ilki, ELISA’nın en yaygın versiyonu olan sandwich ELISA yöntemidir. İkincisi, özgül antijene karşı oluşan antikorları araştırmada kullanılan, antikor yakalama (anti-body capture) yöntemidir. Üçüncüsü ise Mikropartikül enzim immün assay (MEIA) yöntemidir.

3.7. FLOW CYTOMETRY

Hücrelerin biyokimyasal ve fiziksel özellikleri yıllardır primer mikroskop özellikleri kullanılarak saptanmasına karşılık günümüzde, Flow cytometry temel olarak hücrelerin büyüklüğune ve granülaritesine bağlı olarak tek hücre seviyesinde araştırma imkânı sağlamaktadır. Flow cytometry sistemi, süspansiyon halindeki hücrelerde yüzey antijenlerinin belirlenmesi, B hücreleri ile T hücre alt gruplarının tayini, lösemi ve lenfoma tiplemesi, DNA analizi, fagositoz, otoantikor tayini ve kromozom analizi gibi bir çok konuda kullanılmaktadır. Flow cytometry’ nin; çok sayıda hücreyi hızla sayabileme, çok az sayıldaki neoplastik hücreyi geniş bir hücre popülasyonu içinden saptama, hücre alt gruplarının
ayrımı ve heterojen hücre popülasyonlarının saflaştırılması (sorting) gibi klinik kullanımda önemli özellikleri vardır (73).

3.7.1. Hücre Analizi

4. GEREÇ ve YÖNTEM

4.1. DENEY

Çalışmaya alınan denekler işaretlenerek, randomize olarak 4 gruba ayrıldı. Tüm deneklere anestezi Ketamin HCl (Ketalar®, Eczacibaşı, İstanbul) 90 mg/kg ve Xylazine (Romphun® Bayer, İstanbul) 10 mg/kg intramüsküler uygulanarak sağlandı.

Grup I (Kontrol Grubu, n=6): Bu gruptaki deneklere 1 ml % 0.9 NaCl intraperitoneal olarak enjekte edildi.

Grup II (Sepsis Grubu, n=6): Deneklere 1 ml % 0.9 sodyum klorür (NaCl) içerisinde E. Coli lipopolisakkariti (LPS) (0111:B4; Sigma Chemical, St. Louis, MO) 2,5 mg/kg intraperitoneal olarak enjekte edilerek deneysel sepsis modeli oluşturuldu (74).
Grup III (Sepsis Modeli Oluşturularak IgM ve IgA ile zenginleştirilmiş immunglobulin verilen grup, n=9): Bu gruptaki deneklere 1 ml % 0.9 NaCl içerisinde 2,5 mg/kg E. coli lipopolisakkarit, intraperitoneal olarak verilerek deneysel sepsis modeli oluşturuldu ve deneklere, LPS uygulandıktan 6 saat sonra ve sonraki iki gün 4 ml/kg (1 ml’sinde; 6 mg IgM, 6 mg IgA, 38 mg IgG içerir) IgM ve IgA ile zenginleştirilmiş immünglobulin (Pentaglobin, Biotest Pharma GmbH, Dreieich, Germany) intraperitoneal olarak uygulandı (75).

Grup IV (Sepsis Modeli Olusturularak IgG içeren immunglobulin verilen grup, n=9): Bu gruptaki deneklere 1 ml % 0.9 NaCl içerisinde 2,5 mg/kg E. coli lipopolisakkarit, intraperitoneal olarak verilerek deneysel sepsis modeli oluşturuldu ve deneklere LPS uygulandıktan 6 saat sonra ve sonraki iki gün 500 mg/kg, IgG içeren immunglobulin (Flebogamma® 5%, GRIFOLS, USA.) intraperitoneal verildi (76).

Deneklere E. coli LPS’nin intraperitoneal olarak verilmesinden yaklaşık 6-8 saat sonra hastalık belirtileri gözlemlendi. Sepsis tanı kriterleri olarak, deneklerin vücut isılarnı korumak için bir arada toplandıkları, hareketleri azaldığı ve yavaşladıği, piloereksiyon, gözlerde çapaklanma ve kanama geliştiği gözlemlendi (77). Bu belirtileri 12 saat içerisinde göstermeyen denekler çalışma dışı bırakıldı. Ayrıca deneklerden bazal, 24. ve 72. saatte kuşruk veninden alınan kan örneklerinden lökosit ölçümleri ve rektal yolla (MICROLIFE marka digital termometre kullanılarak) vücut isıları ölçüldü. Sepsis gelişmeyen ve çalışmaya tamamlayamayan deneklerin yerine yeni denekler alınarak denek sayısı 30’a
Deneklerden girişim öncesinde ve girişimden sonra 24. ve 72. saatlerde sonraki kuyruk veninden alınan kan örneklerinden Flow cytometry ile periferik kan lenfosit subgrupları (CD45+, CD14+, CD3+, CD4+, CD8+, CD4++26+, CD4++30+) ölçüldü, ELISA ile de rat IL-4, IFN-γ düzeyleri ölçülerek, Th polarizasyonu yorumlandı. Gruplar arası 14 günlük sağ katılım oranı değerlendirildi.

4.2. FLOW CYTOMETRY ANALİZİ

Periferik kan lenfosit subgruplarının İmünoloji Anabilim Dalı Laboratuvar'ında, lenfositlerin iki renk (double-colour direkt immünofluoresan yöntemi) immünofenotiplendirilmesi fluoresan izotiyosiyanat (fluorescein isothiocyanate, FITC) veya pikoeritrin (phycoerythrin, PE) ile direkt bağlı monoklonal antikorların işaretli kombinasyonlarının kullanılması olan kan lizis yöntemi uygulanarak, Becton Dickinson (BD) FACScan (USA) marka akım sitometri aletinde aşağıdaki rat monoklonal antikorları değerlendirildi:

CD45+ (CL001F), CD3+ (CL020FITC), CD4+ (CL003PE), CD8+ (CL004PE),
CD4++26+ (CL061FITC) [Cedarlane Laboratories, CANADA]

CD14+ PE (553740) CD4++30+, PE (559232) [BD Biosciences, CANADA]

Yukarıda belirtilen lenfosit alt grup yüzey belirleyicileri (CD45+, CD14+, CD3+, CD4+, CD8+, CD4++26+, CD4++30+) için spesifik rat monoklonal antikorları ve izotipik kontroller için (IgG1α, IgG2α) tipi rat monoklonal antikorları kullanılarak direkt immünoflorasan yöntemi ile akım sitometrisinde ölçüldü.

Venöz kan örnekleri 0,2 ml EDTA’lı tüp içine 0,8 ml alınarak toplam 1 ml’ye tamamlandı iki saat içinde çalışıldı.
Örneklerin Hazırlanması:

1) 75 mm’ lik polipropilen tüplerin içine 20 µL CD45⁺, CD14⁺, CD3⁺, CD4⁺, CD8⁺, CD4⁺+26⁺, CD4⁺+30⁺ ları içeren monoklonal antikorlar konuldu.
2) Üzerine tam kan sayımı için alınan örneklerdeki ile aynı dilüsyonda 100 µL tam kan konuldu.
3) Hazırlanan örnekler karıştırılarak 20 dakika karartılarak ve oda sıcaklığında bekletildi.
4) Eritrositleri parçalamak ve lökosit stabilizasyonunu sağlamak için hazırlanan karışımı TQP rep cihazında yıkama işleminden geçirildi.
5) Tüp içerisine 500 µL PBS eklenerek analizörde okundu. Her okumada spesifik monoklonal antikordan 10’ ar µL IgG1a-FITC , IgG2a-PE izotipik kontrol olarak kullanıldı.

Analizler: 488 nm lazer; yana saçılma (SS) 90° ile saçılma (FS) ve flüoresan FL1 (530 nm dalga boyunda yeşil), flüoresan FL2 (585 nm dalga boyunda oranj) dedektörleri kullanılarak System II Software 3.0 programında yapıldı. SS’ e Karşı FS dedektörlerinin kullanımı ile hücreler büyüklük ve granül içeriklerine göre bilgisayar ekranında yansıtılıp, lenfositler diğer periferik kan hücreleri ve yerleşim yerleri esas alınarak ayrıldı. Her bir hücre grubu için 10.000 lenfosit sayıldı. Çalışmada CD45⁺ - IgG1a- FITC / CD14⁺ - IgG2a – PE monoklonal antikor çifti kullanılarak lenfosit fraksiyonları üzerindeki kaplar denetlendi. Her çalışmada analiz edilen hücre gruplarının en az %95 oranında CD45⁺ taşıdığı ve monosit karışımının < %2 olduğu belirlendi. Sonuçlar yüzde değer şeklinde ölçülüp, bu değerler ile çarpılarak her bir lenfosit alt grubunun absolü sayısı hesaplandı.
4.3. SİTOKİN ANALİZİ

Sitokin tayinleri için deneklerden girişim öncesinde ve girişimden sonra 24. ve 72. saatlerde, yaklaşık 0,5 ml. kan alındıktan sonra örnekler, 3000 rpm.de 5 dakika santrifüj (Lobofuge 200-Heraeus sepatech Instruments; Germany) edildi. Ayırıştırılan serumlar, sitokin analizleri yapılarak –80 °C ısıta derin dondurucuda (New Brunswick Scientific, -80°C Ultra Low Freezer, U-57085; USA) bekletildi. IFN-γ (KRC4021 BIOSOURCE, USA) ve IL-4 (KRC0041 BIOSOURCE, USA) rat sitokin kitleri kullanılarak ELISA yöntemiyle gerçekleştirildi. Kullanılan kitlerin sensivite değerleri IFN-γ için <13 pg/ml, IL-4 için <2.0 pg/ml olarak kaydedildi. Tüm ölçümler Fırat Tıp Merkezi İmmünoloji Laboratuarı'nda yapıldı.

4.4. İSTATİSTİKSEL ANALİZ

İstatistikti değerlendirme için Statistical Package for Social Sciences (SPSS) 12.0 programı kullanıldı. Elde edilen veriler ortalama ± standart deviasyon olarak alındı.

Gruplar arasındaki tüm verilerin karşılaştırmasında One-Way ANOVA, Tukey HSD. Kruskal Wallis ve Mann Whitney U testi kullanıldı. Grup içi karşılaştırmada Paired-Samples T testi ve Wilcoxon analizleri uygulandı. Grupların sağ kalmış oranları Kaplan-Meier analizleri ile değerlendirildi. p<0.05 anlamlı olarak değerlendirildi.
5. BULGULAR

Çalışmaya alınan deneklerin ağrılıkları incelendiğinde gruplar arasında
anlamlı fark saptanmadı (p>0.05). (Tablo-3)

Kontrol grubundaki denekler hariç, diğer üç gruptaki deneklerin lökosit
düzeyleri bazal değer ile karşılaştırıldığında 24. saatte yükseldiğini ancak 72. saat
ile karşılaştırıldığında anlamlılık saptadık. Deneklerin ortalama vücut
ıstılarının, kontrol grubu hariç diğer üç çalışma grubunda da bazal değer göre
yükseldiğini saptadık.

Tablo-3. Gruplara göre deneklerin ağrılık ortalamalarının dağılımı (Ort ± SD)

<table>
<thead>
<tr>
<th>GRUPLAR</th>
<th>n</th>
<th>Ağırlık (gr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grup I</td>
<td>6</td>
<td>224.62 ± 6.90</td>
</tr>
<tr>
<td>Grup II</td>
<td>6</td>
<td>225.23 ± 9.14</td>
</tr>
<tr>
<td>Grup III</td>
<td>9</td>
<td>223.37 ± 11.48</td>
</tr>
<tr>
<td>Grup IV</td>
<td>9</td>
<td>221.12 ± 13.85</td>
</tr>
</tbody>
</table>
5.1. CD3⁺ LENFOSİT (TOTAL T LENFOSİT) FLOW CYTOMETRY ANALİZ BULGULARI

Kontrol grubunda bazal değere göre, ölçüm yapılan diğer dönemler arasında belirgin bir değişiklik gözlenmezken, sepsis oluşturan grupta bazal değere göre 24. saatte anlamlı olmayan azalma, ardından ve 72. saatte anlamlı olmayan artış saptandı. III. ve IV. gruplarda bazal değere göre 24. saatte anlamlı azalmalar (sırasıyla p=0.03 ve p=0.008), ardından 72. saatte ise IV. grupta bazal değere göre anlamlı artış saptandı (p=0.008). Aynı dönem içerisinde gruplar arası karşılaştırmada anlamlı bir fark saptanmadı.

![CD3⁺ lenfosit düzeyleri grafik](image)

Şekil-6: Deneklerin CD3⁺ lenfosit düzeyleri

&: p<0.05 Bazal değer ile karşılaştırıldığında
5.2. CD4⁺ LENFOSİT (TH- T HELPER LENFOSİT) FLOW CYTOMETRY ANALİZ BULGULARI

![CD4⁺ Lenfosit Düzeyleri](image)

Şekil-7: Deneklerin CD4⁺ lenfosit düzeyleri

\&: p<0.05 Grup III’de 24. saat değeri ile karşılaştırıldığında

p<0.05 Grup IV’te bazal ve 24. saat değerleri ile karşılaştırıldığında
5.3. CD8⁺ LENFOSİT (TC- T SİTOKSİK LENFOSİT) FLOW CYTOMETRY ANALİZ BULGULARI

Kontrol grubunda bazal değere göre, diğer ölçüm yapılan dönemlerde belirgin bir fark gözlemezken, sepsis grubunda 24. ve 72. saatte bazal değere göre anlamsız bir artışlar saptandi. III. grupta bazal değere göre 24. saatte anlamlı olmayan azalma ardından 72. saatte anlamlı olmayan bir artış saptandı. IV. grupta ise bazal değer ile karşılasyırdığında 24. saate anlamlı bir azalma saptanırken (p=0.05), 72. saatte hem bazal değere göre hemde 24. saate göre anlamlı bir artışlar saptandı (p<0.05). Aynı dönem içerisinde gruplar arası karşılaştırıldığında anlamlı bir fark saptanmadı.

Şekil-8: Deneklerin CD8⁺ lenfosit düzeyleri

 &: p<0.05 Bazal değer ile karşılaştırıldığında

e: p<0.05 24. saat değeri ile karşılaştırıldığında
5.4. CD4⁺+26⁺ T LENFOSİT (TH1) FLOW CYTOMETRY ANALİZ

BULGULARI

Kontrol, II. ve III. gruplarda bazal değer ile diğer dönemler karşılaştırıldığında anlamlı bir değişiklik saptanmadı. IV. grupta bazal değere göre 24. saatte anlamlı olmayan bir azalma, 72. saatte hem bazal, hem de 24. saate göre anlamlı bir artış saptandı (sırasıyla p=0.01, p=0.01). IV. grupta 72. saatte II. ve III. gruba göre anlamlı artış saptandı (sırasıyla p=0.018, p=0.015).

Şekil-9: Deneklerin CD4⁺+26⁺ lenfosit düzeyleri

&: p<0.05 Bazal değer ve 24. saat karşılaştırıldığında,

#: p<0.05 II. ve III. grup ile karşılaştırıldığında
5.5. CD4⁺+30⁺ T LENFOSİТ (TH2) FLOW CYTOMETRY ANALİZ

BULGULARI

Kontrol grubunda bazal değere göre, ölçüm yapılan diğer dönemler arasında belirgin bir değişiklik saptanmazken, sepsis oluşturulan grupta bazal değere göre 24. ve 72. saatte anlamlı artışlar saptandı (sırasiyla p=0.02, p=0.02). Bazal değer ile karşılaştırıldığında, III. grupta 24. saatte, IV. grupta 24. ve 72. saatte anlamlı artışlar saptandı (p<0.05).

24. saatte II. III. ve IV gruplarda I. gruba göre, II. grupta ise III. gruba göre anlamlı bir artış saptandı (p<0.05). 72. saatte II. III. ve IV gruplarda I. gruba göre, II. grupta III. ve IV. gruplara göre, IV. grupta ise III. gruba göre anlamlı bir artış saptandı (p<0.05).

Şekil-10: Deneklerin CD4⁺+30⁺ düzeyleri

& : p<0.05 Bazal değere ile karşılaştırıldığında

: p<0.05 Kontrol grubu ile karşılaştırıldığında

£ : p<0.05 II. grup ile karşılaştırıldığında

$: p<0.05 IV. grup ile karşılaştırıldığında
5.6. IFN-γ

Kontrol grubunda bazal değere göre, ölçüm yapılan diğer dönemler arasında belirgin bir değişiklik gözlenmedi. II grupta bazal değer ile karşılaştırıldığında 24. ve 72. saatte anlamlı bir azalma saptandı (p<0.05). III. grupta bazal değer karşılaştırıldığında 72. saatte anlamlı bir azalma saptandı (p=0.01). IV. grupta bazal değer karşılaştırıldığında 24. ve 72. saatte anlamlı azalma saptandi (sırasıyla, p=0.01, p=0.008).

24. saatte II. ve IV. gruplarda I. gruba göre anlamlı bir düşüş (sırasıyla p=0.004, p=0.002), III. ve IV. gruplarda II. gruba göre anlamlı bir artış (sırasıyla p=0.001, p=0.021), III. grupta ise IV. gruba göre anlamlı bir artış saptandı (p=0.013). 72. saatte II. III, IV gruplarda I. gruba göre anlamlı azalma (sırasıyla p=0.004, p=0.008, p=0.001), II. gruba göre III. ve IV. gruplarda anlamlı bir artışlar saptandı (sırasıyla p=0.002, p=0.013)

Şekil-11: Deneklerin serum IFN-γ düzeyleri

& : p<0.05 Bazal değerler ile karşılaştırıldıklarında
: p<0.05 Kontrol grubu ile karşılaştırıldığında
é : p<0.05 II. grup ile karşılaştırıldığında
£ : p<0.05 IV. grup ile karşılaştırıldığında
5.7. IL-4

Kontrol grubunda bazal değere göre, ölçüm yapılan diğer dönemler arasında belirgin bir değişiklik gözlenmez iken, bazal değere göre II, III ve IV. gruplarda 24. saate göre anlamlı artışlar saptandı (p<0.05). 72. saatte II ve IV. grupta bazal değere göre anlamlı yükseme saptandı (p<0.05).

24. saatte II. grupta I. gruba göre anlamlı artış saptandı (p=0.016). III. ve IV. grupta ise II. gruba göre anlamlı azalmalar saptandı (p=0.013). 72. saatte II ve IV. gruplarda hem I. hemde III gruba göre anlamlı artış saptandı (p<0.05).

Şekil-12: Deneklerin serum IL-4 düzeyleri

& : p<0.05 Bazal değer ile karşılaştırıldığında

: p<0.05 Kontrol grubu ile karşılaştırıldığında

é : p<0.05 II. grup ile karşılaştırıldığında

£ : p<0.05 Kontrol ve III. grup ile karşılaştırıldığında
Deneklerin sağkınm sürelerine bakıldığında;

I. gruptaki deneklerde 14 günlük gözlem sürecinde ölüm görülmedi.

II. gruptaki deneklerin; 83-108 saatler arasında öldüğü gözlemlendi.

III. gruptaki deneklerin kontrol grubu hariç, diğer gruplara göre daha iyi prognoz ortaya konan bir tablo sergilediği belirlendi. Bu gruptaki deneklerin; 125-310 saatler arasında öldüğü saptandı.

IV. gruptaki deneklerin ise; 98-210 saatler arasında öldüğü saptandı.

Sağkınm oranlarına bakıldığında, kontrol grubu ile III. grup arasında anlamlı bir fark saptanmadı.

![Şekil-13 : Deneklerin saatlere göre sağ kalm oranları](image-url)
6. TARTIŞMA

İlk deneySEL peritonit çalışması farelerin peritonuna letal doz pnömokok enjeksiyonu ile 1905 yılında Kindborg tarafından gerçekleştirilmesinden bu yana bakteri kullanarak yapılan deneySEL peritonit ve sepsis modelleri günümüZün halen önemli araştırma konuları arasında yer almaktadır. DeneySEL peritonit ve sepsis modellerinin yaklaşıksı yüzYıllık gelişimi esnasında, özellikle anti-mikrobiyal ve anti-inflamatuar ilaÇların özel patojenlere veya inflamatuar ajanlara karşı etkilerini inCElemek bir Çok araÇtirmacı için ilgi odağı olmuştur. Bu çalışmalarda özellikle pro-inflamatuar sitokinlerin salgulanması sonCu immün sistemin baskılanmasına veya aktive edilmesine yol açan bir diZı immüno-inflamatuar reaksiyonндексlen défini belirtilmiştir (78).

Pro-inflamatuar sitokinlerin aktive veya baskılama özelliklerinin açıklanmasında, sadece serum değiştirilerini belirlemek yanıtıcı sonuçlara neden olabilmektedir. Pro-inflamatuar sitokinlerin periferik dolaşında yaralanma ömürleri kısadır. Ayrıca kanda çözünür doğal inhibitörleri de bulunmaktadır (79). Günümüzde yapılan sepsis ile ilgili klinik ve deneySEL çalışmalarda, periferik kan lenfosit subgroupları veya lenfositlerdeki hücre içi sitokin düzeylerinin incelenmesi ile T lenfositlerindeki Th1 ve Th2 hücre tipi sitokinlerinin taraması, T lenfositlerin Th1 veya Th2 yönü reaksiyonlarından hangisine yöneldiği en geçerli yöntemlerle saptanmaktadır (80).

Çalışmamızda, farklı iki IVIG preparat kullanarak deneklerde Th polarizasyonu (Flow cytometry ve Elisa yöntemi ile) ve sağkalım oranları değerlendirildi.
CD4⁺ T lenfositlerinin Th1’lere farklılaşarak inflamatuar ve Th2’lere farklılaşarak ise antiinflamatuar sitokinlerin salınılmasına yol açmalarının yanı sıra, sepsiste gözlenen Th1’lerin Th2’lere kayması immünsupresyon mekanizmalarında önemli rol oynar. Th2’ye kayma günümüzde henüz yeni gösterilmekle birlikte; patojenin tipi, miktarı ve enfeksiyonun yeri gibi bileşenlerin, bu kaymanın gerçekleştirilmesindeki etkenlerden olup henüz CD4⁺ T hücrelerinin Th1 veya Th2 yanıtlarına yönelmelerindeki mekanizmalar açıklanamamıştır. Th2 yanıtlarındaki artış sepsisle mortalite üzerine etki etmektedir. Th2 yanıtların Th1’e çevrilmesinin mortaliteyi önlediği ve antiinflamatuar ajanların şiddetli sepsiste kullanılabileceği yapılan çalışmalarında öne sürülmüştür (48).

Yapılan çalışmalarında sepsisin özellikle geç döneminde sepsis bağlı mortaliteye ilişkili olarak ya T hücre anerjisinin gelişerek invitro T hücre kültürlerinde IL-2, IL-4, IL-10 ve IFN-γ olmak üzere gerek Th1 gerekse Th2 tip sitokin sekresyonlarının düşük bulunduğu (42), ya da T hücre kültürlerinde IL-4, IL-5, IL-6 ve IL-10 gibi Th2 sitokinlerin baskın duruma geçtiği; buna karşın Th1 tip IFN-γ ve IL-12 gibi sitokin sekresyonunun azaldığı bildirilmiştir (81).

İntravenöz immünglobulinler serum bakterisidal aktiviteyi stimüle ederek ve antiinflamatuar mediatörleri artırmaya bakteriyel endo ve ekzotoksinleri nötralize etmek suretiyle immün cevabı modüle edebilir. IVIG verilen sepsisli cerrahi hastalardaki sonuçların umut verici olması karşılık sepsis ve septik şok tedavisiindeki kullanım hala tartışma konusudur (82). IgM ve IgA’dan zenginleştirilmiş immünglobulinlerin bakteriyel lipopolisakkaridlere karşı daha
üstün bir antikor içeriğine sahip olduğunu göstermiştir (83). Ayrıca IgM ve IgA'dan zenginleştirilmiş immünglobulinler pahalı olmasına karşın genellikle daha iyi toler edilmekte ve yaklaşık 20 yıllık kullanımı neticesinde herhangi bir viral transmisyona (bulaş) yol açmadığından daha güvenlidir. Yine buna benzer şekilde gram-negatif septik şoklu hastalar üzerinde yapılan prospektif kontrollü bir çalışmada IgM ve IgA ile zenginleştirilmiş immünglobulin ile tedavi sonrasında sağkalının daha iyi olduğu ortaya konmuştur. Nötropenik hastalarda poliklonal IgM ve IgA ile zenginleştirilmiş immünglobulin ile tedavi sonrasında faydalı sonuçlar alındığına dair çalışmalar mevcuttur (84).

Yanık sonrası travma oluşan hastalarda yapılan prospektif bir çalışmada; 1, 3, 5 ve 7. günlerde alınan kan örneklerinden Flow cytometry yöntemi ile intrasitoplazmik sitokin düzeyleri değerlendirilmiş ve sepsis bağlı mortalitede, Th2 tipi sitokinlerin (IL-4, IL-5, IL-6 ve IL-10 gibi) baskın, buna karşın Th1 tip IFN-γ ve IL-12 sekresyonunun azlığı şeklinde bir sitokin profili ile ilişkili olabileceği görüşü ieri sürülmüştür. İmmün fonksiyon sitokin kaskadına bağlı değişimde farklı çalışmalar ile benzer immünopatolojik sonuçların elde edildiği vurgulanmıştır. (85).

Puyana ve arkadaşları; 37 travma hastasında yaptıkları çalışmada, travmadan 48 saat sonra kan örneklerini alarak analiz etmişlerdir. Anerjik hastalarda mortalitenin daha fazla; T hücre proliferasyon değerlerinin ise multiorgan yetmezlik (MOF) ve Acute Physiology and Chronic Health Evaluation (APACHE III) skorlarıyla ters orantılı olduğu bildirilmiştir. Bu hastaları invitro T hücre kültürlerinde IL-2, IL-4, IL-10 ve IFN-γ olmak üzere gerek Th1 gerekse Th2 tip
sitokin sekresyonları düşük bulunmuş; baskı olarak Th2 tip T lenfosit klonlarına sahip hastalarda daha sondan anerji gelişme oranının çok daha düşük olduğu belirtilmiştir (42).

Weighardt ve ark., major cerrahi uygulandıktan sonra sepsis sendromu gelişen 35 hastada yaptıkları çalışmada; inflamatuar olaylarda özellikle IL-4, IL-5, IL-6 ve IL-10 gibi Th2 tip sitokinlerin baskı duruma geçtiğini, buna karşın Th1 tip IFN-γ ve IL-12 gibi sitokin sekresyonunun azaldığını ve bu sitokin profilinin sepsis bağlı mortaliteyle ilişkili olabileceği öne sürmüşlerdir (81).

Çalışmamızda, E. coli lipopolisakkariti uygulayarak deneyseks modeli oluşturduğumuz ratlardan bazal değer için işlem başlangıçta, 24. ve 72.. saatlerde alınan kan örneklerinde sitokin profilini değerlendirdik. Sepsis oluşturduğumuz grupta Th1 tip sitokin olan IFN-γ sekresyonunun, 24. saatte ve daha geç dönemde 72. saatte hem bazal hemde kontrol grubundaki değerine göre azaldığını, Th2 tip sitokin olan IL-4 sekresyonunun ise 24. saat ve 72. saatte hem bazal değerlere hemde kontrol grubuna göre arttığını saptadık.

Steinhauser ve ark. nın yaptıkları çalışmada; ÇBD yöntemi ve LPS uygulayarak sepsis modeli oluşturdukları farelerde, proinflamatuar ve antiinflamatuar sitokinleri Elisa yöntemi ile değerlendirilmiş, IL-12’nin akut septik peritonitteki ve sistemik sepsisteki rolü incelenmiştir. IL-12 uygulanmasının septik peritonitte IFN-γ düzeyini yükseltmek sağ kalm süresini artırdığı belirtmişlerdir (86).
Napolitano ve ark’ının farelerde yaptıkları çalışmada, deneklerde femur fraktürü oluşturup 4 gün süre ile E.coli LPS’ni (400 µg) intraperitoneal olarak olarak uygulamışlardır. Bir grup deneğe IL-10 (100 µL salın içinde 0,5 µg), diğer bir gruptaki deneklere ise anti-IL-10 (100 µL salın içinde 100 µg) ilk LPS dozundan 30 dk. önce intraperitoneal olarak uygulamışlardır. Femur fraktürü oluşturup LPS verilen farelerde, IL-10 tedavisinin sağ kalım süresini artırdığını ve tedavinin erken dönemde Th2 sitokini olan IL-4 düzeyini yükselttiğini belirtilmiştirlerdir (87).

Çalışmamızda; deneklere E. coli lipopolisakkaritini intraperitoneal olarak uygulayarak sepsis modelini ortaya konduktan sonra iki farklı IVIG uyguladık. IVIG uyguladığımız gruplarda, özellikle de IgM ve IgA’dan zenginleştirilmiş immünglobulin uygulanan grubta daha belirgin olmak üzere 24 ve 72. saatte IFN-γ düzeyini sepsis grubuna göre daha yüksek olarak olarak saptadık. IL-4 düzeyinde ise 24. saatte bazal değere ve kontrol grubuna göre yükseldiğini, 72. saatte ise IgG uyguladığımız grupta yükselmeye devam ettiği, IgM ve IgA’dan zenginleştirilmiş immünglobulin uyguladığımız grupta ise azalarak kontrol grubundaki değere yaklaştığını saptadık. IgM ve IgA’dan zenginleştirilmiş immünglobulin uyguladığımız grupta erken dönemde IL-4 düzeyi artmış, ancak daha sonra düşmeye başlamış ve bu grupta sağ kalım süresi, kontrol grubu hariç diğer gruplara oranla daha uzun olarak tespit edilmiştir. IVIG uyguladığımız gruplardaki bu sitokin profili ve sağ kalımdaki süresinin daha uzun olması, IVIG preparatlarının antiinflamatuar etkisinin olabileceği düşündürmektedir.
Sewnath ve ark.’ları, IL-10 defisiti olan ve olmayan farelerde yaptıkları çalışmada; deneklere intraperitoneal olarak E. coli (200 μL salin içinde 10^2, 10^3, 10^4 koloni içeren) uygulayarak peritonit modeli oluşturup ve anti-TNF antikorlarının serum TNF düzeylerine ve mortalite üzerine olan etkilerini araştırmışlardır. Peritonit indüksiyonundan 2 saat önce Anti-TNF (0,5 mg) uygulaması ile IL-10 defekti olan ve olmayan deneklerin serum TNF düzeylerinde anlamlı bir fark olmadığını ve 24. ve 36. saatlerde en belirgin mortalite oranını saptamışlardır (88).

Sistemik olarak LPS uygulanarak deneysel sepsis modeli oluşturan ratlar, LPS uygulanmasından 4-14 saat sonra sakrifiye edilerek kan sitokin düzeyleri ELISA yöntemi ile çalışılmış ve serum TNF-α, IL-1β ve IL-10 düzeylerinin her iki kan örneğinde de artmış olduğu saptanmıştır (89).

Ono ve ark., ÇBD yöntemi ile peritonit oluşturdukları farelerden 12. saat, 1., 3., 5., ve 7. günlerde alınan kan örneklerinde TNF-α, IL-12, IL-18 ve IL-10 düzeylerini ELISA yöntemi ile değerlendirmişlerdir. IL-12, IL-18 ve IL-10 düzeylerinde ÇBD işleminden sonraki 12. saatte pik yaparken 1. ve 3. günlerde de yükselme olduğunu saptamışlardır. Sitokinlerin ÇBD’ nin 7. ayında ise bazal değerlere döndükleri görülmuştur. TNF-α’da ise anlamlı değişiklik saptanmamıştır. ÇBD işleminden 7 gün sonra subletal dozlarda LPS uygulanan farelerin serum IL-12, IL18, AST ve ALT düzeyleri ve karaciğer mononükleer hücrelerinde IL-12 ve IL-18 üretiminin arttığını görülmüştür. LPS uygulanmasından önce anti-IL-12, anti-IL-18 veya her ikisinin birlikte uygulanmasının sağ kalım oranlarını artırdığı saptanmıştır (90).
Yapılan bir çalışmada, farelerde ÇBD yöntemi ile peritonit modeli oluşturulup, IL-12 (0,2 ml) intraperitoneal olarak uygulanmıştır. Uygulamadan 48 saat sonra Elisa yöntemi ile yapılan ölçümlerde IFN-γ düzeyinin anlamlı olarak düşük olduğu, IL-12 uygulamasının IFN-γ düzeyini anlamlı olarak yükselttiğini ve sağ kalım sürelerini arttırdığını tespit edilmiştir (91).

Lally ve ark.'ları yeni doğan farelere ml’sinde 10^5 E. coli bulunan süspansiyondan intraperitoneal olarak uygulayarak deneysel sepsis modeli oluşturdukları çalışmada; peritonit indüksiyonundan 4 saat önce, bir gruptaki deneklere farelerden rekombinant teknikle elde edilmiş IL-10’u iki farklı dozda (25 ng ve 50 ng) uygulamışlar ve diğer bir gruba ise anti-TNF-α (20 µL) uygulamışlardır. Anti-TNF-α ile tedavi verilen grupta kontrol grubuna göre sağ kalım oranında belirgin bir iyileşme saptanmıştır. Kontrol grubuna göre 25 ng IL-10 ile tedavi verilen grupta sağ kalım açısından anlamli bir fark bulunamazken 50 ng IL-10 verilen grupta kontrol grubu arasında sağ kalımda anlamli fark saptanmıştır (92).

Çalışmamızda; deneklerden 3 farklı dönemde kan örneği aldık. Sepsis oluşturduğumuz grupta, kontrol grubu ve bazal değere göre IFN-γ düzeyinin 24. ve 72. saatte düştüğünü, CD4^+26^+ düzeyinin 24. saatte azaldığını ancak 72. saatte artmaya başladığini saptadık. IL-4 düzeylerinin ise 24. ve 72. saatte kontrol ve bazal değerlerine göre attığını tespit ettik. IVIG uyguladığımız gruplarda, sepsis oluşturduğumuz gruba göre, IFN-γ düzeyindeki düşüşün daha az olduğu, IL-4 düzeylerindeki artışı ise daha az olarak saptadık. Deneklerin, sepsis oluşturduğumuz grupta 3-5. günler arasında, IVIG uyguladığımız gruplarda ise 5-
14. günler arasında öldüğünü saptadık. IgM ve IgA’dan zenginleştirilmiş immünoglobulin uyguladığımız grupta daha belirgin olmak üzere sağ kalımdaki artışın, bu preparatların erken dönemde, organ disfonksiyonları gelişmeden önce, belki de endotoksenin başlangıcında uyguladığımız için olabileceği düşünmekteyiz.

Trautmann ve ark., IVIG preperatlarının içindeki LPS spesifik IgG antikorlarını değerlendirmişlerdir. Antijen olarak, septisemik enfeksiyonlarda en sık rastlanan E.coli, Klebsiella ve P.aeruginosa O antijen serotiplerinden elde edilen LPS’yı seçmişlerdir. LPS antikorlarını standardize ELISA metodu ile kantitatif olarak ölçmüştür. IVIG solüsyonlarında E.coli, Klebsiella pneumoniae ve Pseudomonas aeruginosa suşlarının O antijen serotiplerine karşı antikorların ölçülebilir düzeyde bulunduğunu göstermişlerdir. Yine bu çalışmada, IgM ile zenginleştirilmiş tek preparat olan Pentaglobin’in özellikle yüksek antikor konsantrasyonuna sahip olduğu vurgulanmış ve buna bağlı olarak IgM ile zenginleştirilmiş preperatların Gr(-) nozokomiyal enfeksiyonların tedavi ve profilaksisinde daha faydalı olabileceğiğini bildirmişlerdir. Bu çalışma sonucunda IgM ile zenginleştirilmiş preperatların endotoksinin temizlenmesi ve nötralizasyonunda en etkili IVIG preperatları olduğu kanısına varılmıştır (83).

Streptokokk talokık şok sendromu, çok merkezli, çift kör, randomize kontollü çalışmada, hastalara poliklonal IVIG (1.gün 1 gr/kg, 2. ve 3. gün 0,5 gr/kg olarak) uygulanmıştır. Ayrıca hastalara intravenöz benzil penisilin (12 gr/gün) ile birlikte Clindamisin (600 mg/gün) uygulanmıştır. Çalışmanın sonucunu etkilememesi için hastalara plazmaferez uygulanmamıştır. Plasebo
grubundaki mortalite oranı, poliklonal IVIG verilen gruba göre 3.6 kat daha yüksek olarak bulunmuştur. Aradaki farkın istatistiksel açıdan pek bir anlam olmaya da streptokokkal toksik şok sendromu tedavisinde IVIG kullanılabılır sonucuna varılmıştır (93).

Kress ve ark.’ların, elektif kardiyo-pulmoner baypass uygulanacak 515 hastada yaptıkları çalışmada; cerrahiden 4 saat sonra IgM ile zenginleştirilmiş IVIG (ilk 3 saat 33 ml/saat sonraki 50 saatte ise 6 ml/saat olarak) uygulamışlardır. Bu hastalardan; 40 anerji hastadada postoperatif enfeksiyon gelişmiştir. Enfeksiyon oranları plasebo grubunda %43, IVIG grubunda ise %5 olarak bulunmuş. Profilaktik olarak IgM ile zenginleştirilmiş IVIG kullanılmasının enfeksiyon riskini belirgin olarak azalttığı saptanmıştır. Ancak bu çalışmada mortalite bir ölçüt olarak değerlendirilmemiştir (94).

Çalışmamızda, deneysel sepsis modeli oluşturduğumuz ratlara, LPS enjeksiyonundan 6 saat sonra ve sonraki iki gün de dahil olmak üzere, 3 gün boyunca IVIG uyguladık, IgM ve IgA’dan zengin immünglobulin uyguladığımız grup ile kontrol gruba arasında sağlıklı oranlarında bir anlamlı farklı saptadık. Bu sağlıklı sürenin daha iyi olmasıın sebebinin; literatürdeki çalışmalararda (83) belirtildiği gibi IgM ve IgA’dan zengin immünglobulin preparatının, sadece IgG içeren immünglobulin preparatına göre daha fazla antijen bağlaması, endotoksinin temizlenmesi ve nötrolikasyonunda en etkili IVIG preparatları olduğu ve kompleman inhibisyon özelliğinin daha fazla olmasından kaynaklandığı sonucu olabileceği kanaatindeyiz.
Hentrich ve ark.ın çok merkezli, prospektif, randomize kontrollü çalışmalarında; sepsis sendromlu veya septik şoklu nötropenik hastalara kemoterapi uygulanmış ve sonrasında da 1300 ml %5 IgM ve IgA ile zenginleştirilmiş immünglobulin (Her 100 ml’ sinde 3,8 gr IgG, 0,6 gr IgM, 0,6 gr IgA) ve %5 Human Albumin 72 saat içinde verilmiştir. Çalışmada 28 günlük peryottaki tüm mortalite nedenleri incelenmiştir. IgM ve IgA ile zenginleştirilmiş immünglobulin verilen gruptaki mortalite %26,2 iken bu oran plasebo grubunda %28,2 olarak bulunmuştur. Sepsis sendromlu hastaların %72’sindeki 28 günlük mortalite IgM ve IgA ile zenginleştirilmiş immünglobulin verilen grupta %17,1 iken plasebo grubunda %16,7 ve septik şoklu hastaların %28’ inde bu oran %52,9’a %54,8 olarak bulunmuştur. Araştırmacılar, hematolojik malignensileri olan, septik şoklu ve sepsis sendromlu nötropenik hastalarda IgM ve IgA ile zenginleştirilmiş immünglobulinin hiçbir olumlu etkisinin olmadığını kanaatine varmışlardır (95).

Rodriguez ve ark.’ların, cerrahi uygulanıp abdominal sepsis gelişen 56 hastalık prospektif, randomize, çift kör yaptıkları çalışmada; hastalara 7 ml/kg/gün Pentaglobin ve diğer bir gruptaki hastalara ise aynı dozda %5’lik Human Albumin vermişlerdir. Hastaların 30 günlük sağ kalmış oranını değerlendirmişler, kültür-antibiyogram sonucu ile uyumlu antibiyoterapi alan ve IVIG verilen hasta grubunda mortalite oranının (%27,5 n=8), kültür-antibiyogram sonucu ile uygun antibiyoterapi alan kontrol grubundakine göre (%48,1 n=13) daha düşük olduğunu saptamışlardır. Ancak bu farklı istatiksel olarak anlamlılık tespit etmemişlerdir (96).
Tuğrul ve ark.'ının yaptıkları klinik çalışmada, ağır sepsisli hastalara, 3 gün süreyle 5ml/kg IgM ve IgA ile zenginleştirilmiş IVIG kullanılmış, tedavi günlerinde ve takiben 5 gün boyunca hastaların klinik ağırlık derecelerindeki değişimi değerlendirme amaci ile SOFA skorları hesaplanmıştır, ancak mortalitedeki düşüş net olarak açıklanamamıştır (97).

Erdem ve ark.'ları, 44 prematüre doğan çocukta neonatal dönemde sepsis tedavisinde, standart sepsis tedavisine ek olarak IgM ve IgA ile zenginleştirilmiş immunglobulini 3 gün süresince kullanmışlardır. Çalışmada sepsise bağlı mortalite oranının tedavi grubunda %30, kontrol grubunda %37.5 olarak bulunmuş ve aradaki farkın anlamlı olmadığını bildirmiştir (98).

Werdan ve ark.’ın sepsisli 653 cerrahi ve medikal hasta üzerinde yaptıkları randomize ve kontrollü bir çalışmada; poliklonal İVİG uygulanması ile sepsisin şiddetinde hafif bir azalma olduğu, bununla birlikte mortalitede bir azalma olmadığı sonucuna varılmıştır (82).

Yapılan bir çalışmada; E. coli LPS’i ile sepsis modeli oluşturulran ratlarda, farklı konsantrasyonlarda IgG, IgM ve IgA içeren IVIG preparatlarının kompleman sistem inaktivasyon özelliklerini karşılaştırmış ve çalışmanın sonucunda, hem invtro hem de invivo şartlarda, IgM içeren IVIG’ lerin, sadece IgG içeren standart IVIG preparatlarına oranla kompleman inhibisyon özelliğinin daha fazla olduğunu gözlemlenmiştir (99).

Jacobs ve ark.’ın yaptıkları çalışmada, ÇBD ile peritonit modeli oluşturdukları ratlara, peritonit indüksiyonundan 4 saat sonra; Piperasilin
(1000mg/kg) , Pentaglobin (4ml/kg), diğer bir gruba ise Pentaglobin (4ml/kg) + Piperasilin(1000mg/kg) uygulamışlardı. Pentaglobin +Piperasilin kombinasyonu ile tedavi edilen gruptaki denekler, kontrol grubu hariç, diğer gruplara göre sağlıkın oranının anlamlı olarak daha yüksek olduğunu tespit etmişlerdir (75).

Çalışmamızda, 14 günlük gözlem süresince IVIG uyguladığımız gruplarda yaşam süresi daha uzun olarak saptadık. IgM ve IgA ile zenginleştirilmiş immünglobulin uyguladığımız grupla, kontrol grubu arasında sağlıkın oranlarında anlamılıksız tespit etmedik. Literatürde IVIG ile ilgili klinik çalışmalarda genellikle 28 günlük mortalite oranı, deneySEL çalışmalarda ise 14 günlük mortalite oranları değerlendirilmiştir. Bundan dolayı IgM ve IgA ile zenginleştirilmiş immünglobulin ile ilgili yapılmış çalışma sonuçları dikkatle yorumlanmalı ve standart sepsis tedavisindeki yerinin belirlenebilmesi için daha uzun süreli ve daha geniş çalışma gruplarında değerlendirilmesinin gerektiğini düşünmektediz.

Pentaglobin ile yapılan klinik çalışmalarında, standart antibiyotik tedavisi ile karşılaştırıldığında daha fazla fayda elde edilmiştir. Endotoksemi varlığında dahe Pentaglobin infüzyonu fizyolojik fonksiyonlarda iyileşme sağlamıştır (100, 101).
Asakura ve ark.'ları, ratlara LPS uygulayıp DIC modeli oluşturdukları deneysel çalışmada, deneklere LPS (30 mg/kg) uygulamışlar ve LPS uygulamasından 30 dk önce ve 4 saat sonra iki doz IVIG uygulamışlardır. Diğer gruptaki deneklere LPS (5 mg/kg) uygulayarak oluşturdukları DIC modelinde, LPS’ den 1 saat sonra tek doz IVIG uygulamışlardır. Her iki gruptada IVIG’in plazma kreatinin ve Alanin aminotransferaz düzeylerinin, IVIG uygulanmayan gruptaki deneklere göre daha düşük olduğunu saptamışlardır. Aynı zamanda bu deneklerde IVIG’in glomerüler fibrin depozitlerini azalttığını ve serum TNF ve IL-6’ yi suprese ettiği tespit etmişlerdir. Bu çalışmada; IVIG’in LPS tarafından indüklenen DIC modelinde, TNF ve IL-6’ yi suprese ettiği aynı zamanda hemostatik bozukluğu düzelttiği, organ disfonksiyonunu azalttığı ve glomerular fibrin depozitlerini önlediği bulunmuştur (102).

Yapılan bir deneysel çalışmada, 40 ratta ÇDB yöntemi ile peritonit modeli oluşturulmuştur. Peritonit indüksiyonundan 2 ve 20 saat sonra deneklere sonra IgG (0,4 gr/kg) içeren IVIG uygulanmıştır. Peritonit indüksiyonundan 24 saat sonra deneklerin lökosit sayısının arttığı ve hafif bir metabolik asidoz olduğunu saptamışlardır. IVIG tedavisi verilen deneklerin, takip eden günlerde lökosit sayılarının daha düşük ve pH’ların kontrol grubuna göre daha yüksek olduğu tespit edilmiştir. Bu çalışmanın sonucunda sağlıklı oranı IVIG verilen grupta %70 iken, kontrol grubunda %40 olduğu bulunmuş. IVIG’ in deneysel sepsis tedavisinde yararlı etkilerinin olduğunu dikkat çekmişlerdir (103).
Çalışmamızda, IgG içeren IVIG verdiğiımız grupta, sepsis oluşturulan gruba göre lökosit sayılardaki yükselişin daha az olduğunu ve sağkalım oranlarının daha uzun olduğunu tespit ettik.

İmmünglobin preparatları şiddetli bakteriyel enfeksiyonlarda, antibiyotik tedavisi ile beraber uzun süren beridir kullanılmaktadır (104). IVİG verdiği antilaktamaz antikorlar bağlı olarak ve gram negatif bakterilerinin dış duvarında düzensizliğe neden olmaları dolayısı ile acylureidopenisilinlerle sinerjistik etki gösterebilir(82). İmmünglobin preparatlarının bazı hastalıklarda, antiinflamatuar etkisi olduğu ve sitokin üretimini azalttığı bilinmektedir. Guillan-Barre sendromunun tedavisinde İmmünglobin preparatlarının dolaşımındaki pro-inflamatuar sitokin üretimini azalttığı bilinmektedir (105).

Sepsis sendromlu ve septik şoklu hastalara poliklonal IVİG verilmesindeki amaç sadece immunglobulin düzeylerini düzenlemek ve mikroorganizmalara karşı spesifik antikorlar sağlamak değildir. Bunlarda başka, proinflamatuar hücrelerdeki Fc reseptör blokajı, kompleman aktivasyonunun önlenmesi, lökosit ve serum bakterisidal aktivitenin stimulasyonu ve sitokin etkilerinin engellenmesi (lenfositler tarafından gerçekleşirilen sitokin üretiminin modülasyonu) gibi mekanizmalarla ciddi inflamatuar hastalıkları olan hastalar için potansiyel faydalar temin edildiği öne sürülmektedir (99, 106).

Çalışmamızda; LPS uyguladığımız 3 grupta da, CD3⁺ (Total T Lenfosit) düzeylerinin bazal değere göre 24. saatte azaldığı, 72. saatte ise arttığını saptadık. 72. saattedeki artış IVİG verdiğiımız gruplarda sepsis grubuna göre anlamlı idi. CD3⁺ düzeyleri, enfeksiyon hastalıklarının iyileşme döneminde

Leon ve ark.’ların E. coli lipopolisakkaritinı intraperitoneal uygulayarak deneySEL sepsis modeli oluştuklar farelerde, IL-10 (30 µg/kg) intraperitoneal olarak uygulamışlar. IL-10 uyguladıkları deneklerde, IL-10 uygulamadıkları deneklere göre vücud isısını daha düşük olarak saptamış ve bu deneklerden 1. , 4. ve 24. saatlerde alınan kan örneklerinde IL-6 ve TNF-α düzeylerini anlamlı olarak daha düşük bulmuşlardır. Bu sonuçlarla IL-10 tedavisinin sepsiste antipiretik etkisini açıklamışlardır (74).

Çalışmamızda, LPS uygulayarak sepsis modeli oluşturmamızızın deneklerde, vücud isısını bazal değer ve kontrol grubuna göre daha yüksek olarak tespit ettim. IVIG uyguladığımız gruplar da ise, IgM ve IgA ile zenginleştirilmiş immünoglobulin uyguladığımız grupta daha belirgin olmak üzere, vücud isısındaki yükselişin daha az olduğunu saptadık.

Aslında gerek insanlarda yapılan çalışmalarda, gerekse hayvan modellerinde sepsit uyarısı sonucu hem proinflamatuar ajanların Th1, hem de
bunların zararlı etkilerini modüle etmek için buna paralel olarak antiproinflamatuar ajanların Th2 tip sitokinlerin salgılanmasının indüklendiği; anerji gibi her iki tip sitokin salgılanmaması veya bu dengenin biri lehine bozulması durumunda ise multiorgan yetmezlikleriyle mortalitenin arttığı düşünülmektedir. Proinflamatuar sitokinlerin periferik sirkülüsyonda yaralanma ömürlerinin son derece kısa olması ve kanda çözünen TNF reseptörleri, IL-1 antagonisti gibi doğal inhibitörlerin bulunması nedeniyle sadece kan düzeylerinin araştırılması yanıtltıcı sonuçlar yoldaçı bilinmektedir. Bu yüzden, son yıllarda sepsisli hastalarda yapılan çalışmalarında özellikle, periferik kan lenfosit subgrupları veya intrasitoplazmik sitokin düzeylerinin araştırılması daha doğru sonuçlar vereceği düşünülmektedir. İmmün sistemde Th1 mi yoksa Th2 mi reaksiyonların geçerli olduğu periferik kan lenfosit subgrupları veya T lenfositlerindeki intrasitoplazmik IL-4 ve IFN-γ tayiniyle saptanmaktadır.

Uluslararası Sepsis Komitesi Klavuzları; kanıta dayalı ciddi sepsis ve septik şok tedavisinde hangi tedavinin etkili olduğunu ve verilmesi gerektiğini ve yine hangi tedavinin etkisiz olduğunu ve verilmemesi gerektiğini açıklayan önemli bir klavuzdur. IVIG tedavisi konusunda ise bu klavuz sessiz kalmaktadır. Pediatrik kısmında “poliklonal IVIG” in mortaliteyi azalttığı, sepsis ve septik şokta ümit verici bir adjuvan olduğu belirtildiktedir, fakat erişkin hastalar için olan kısmında pozitif veya negatif olduğuna dair bir açıklama bulunmamaktadır (107).

Şüphesiz IVIG tedavisi konusunda tartışmalar sürüp gidecektir. İmmünomodulatuar tedavi olarak düşündüğümüz IVIG tedavisinin pahalı ve bu nedenle kanıt düzeyi II için uygun olmadığını savunulabilir. Fakat yüksek maliyet
ile mortalitedeki düşüş arasındaki dengenin hesaplanmasıdır. Ayrıca bu kar-zarar muhasebesi tüm uygulanmakta olan tedavilerde de göztemelidir, bu tartışma sadece IVIG için olmamalıdır.

Çalışmamızda, deneysel olarak oluşturdüğümüz SepSeps modelinde, LPS uyguladıktan 6 saat sonra ve sonraki iki gün de dahil olmak üzere ratlara üç gün boyunca intraperitoneal olarak IVIG preparatları uyguladık. Sadece sepsis oluşturduğımız grupta 24. ve 72. saatte, Th2’nin göstergesi olan CD4⁺ + 30⁺ ve IL-4’un hem bazal değerine göre, hem de kontrol ve diğer gruplara göre anlamlı olarak yükseldiğini saptadık. Bunun aksine IVIG uyguladığımız gruplarda, IgM ve IgA ile zenginleştirilmiş immünglobulin uyguladığımız grupta daha belirgin olmak üzere, 24. ve 72. saatte, Th2’nin göstergesi olan CD4⁺ + 30⁺ ve IL-4’un
hem bazal değerine göre, hem de kontrol ve diğer gruplara göre artışın ise daha düşük düzeyde kaldığını saptadık. Bu sonuçlar ışığında IVIG preparatlarının, özellikle de IgM ve IgA ile zenginleştirilmiş tek immünglobulin preparatı olan Pentaglobinin inflamasyonu sınırlayan yani; antiinflamatuar, immün regülasyon ve antitoksik etkili olduğunu düşünülmektedir. Sepsis tedavisinde antibiyoterapi halen altın standarttır. Ancak mikroorganizmaların antibiyotiklere direnç gelişirdikleri göz önünde alındığında, sepsis fizyopatolojisi ve biyopatolojisinin de evrim geçirmekte olduğu ve immün destek tedavisinde gerekli olduğu düşünülmektedir. DeneySEL sepsis modeli oluşturduğumuz ratlarda IVIG preparatlarının, özellikle de IgM ve IgA ile zenginleştirilmiş immünglobulin preparatının daha belirgin olmak üzere, Th2 yanıtını ve mortaliteyi azalttığını, bu açıdan standart sepsis tedavisinde adjuvan olarak kullanılmasına yarar sağlayacağını düşünülmektediyiz.
7. KAYNAKLAR

43. Munder M, Mallo M, Eichmann K, Modolell M. Murine macrophages secrete interferon-gamma upon combined stimulation with interleukin-12 and

81. Weighardt H, Heidecke CD, Emmanuilibis K, Maier S, Bartels H, Siewert JR, Holzmann B. Sepsis after major visceral surgery is associated with sustained and...

82. Werdan K. Pathophysiology of septic shock and multiple organ dysfunction syndrome and various therapeutic approaches with special emphasis on immunoglobulins. Ther Apher. 2001; 5:115-122.

8. ÖZGEÇMİŞ