T.C.
FIRAT ÜNİVERSİTESİ
SAĞLIK BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ

KIZGINLİK GÖSTEREN İNEKLERDE KIZGINLİĞİN FARKLI DEVRELERİNDE ELDE EDİLEN VAGİNA VE SERVIKS AKINTILARINDA FEROMONLARIN ARAŞTIRILMASI

DOKTORA TEZİ

T 54875

Tanzer BOZKURT

F.Ü. VETERİNER FAKÜLTESİ
DÖLERME VE SUN'İ TOHÜLAMA ANABİLİM DALI

DANİŞMAN
Prof.Dr. Eşref DEMİRCİ

ELAZIĞ - 1996
İÇİNDEKİLER

1. ÖNSÖZ.. 1
2. GİRİŞ.. 1
 2.1. Feromonun Tanımı.. 1
 2.2. Feromonların bulunduğu yerler ve etkileri... 3
 2.2.1. İşaret (davranış, ani tepki uyandıran) Feromonları.................... 4
 2.2.1.1. Cervico-vaginal mucusun fiziksel ve kimyasal
 özellikleri... 15
 2.2.2. Öncü (Priming) Feromonlar... 18
3. MATERİAL VE METOT ... 22
 3.1. Kızgınlığın teşhisi.. 22
 3.2. Cervico-vaginal mucusun toplanması... 23
 3.3. Örneklerin fiziksel ve kimyasal özelliklerinin tayini............................. 23
 3.3.1. Renk tayini... 23
 3.3.2. pH tayini... 23
 3.3.3. Vizkozite tayini.. 24
 3.3.4. Su ve kuru madde miktarı tayini... 24
 3.3.5. Mineral madde tayini.. 24
 3.4. Boğa Denemesi... 24
 3.5. Örneklerin kimyasal analizi.. 24
 3.5.1. Kimyasal yapı tayininde kullanılan spektroskopik
 cihazlar... 25
 3.5.2. Cervico-vaginal mucus ekstraksiyonu.. 25
 3.5.2.1. Kloroform / Metanol ile ekstraksiyon işlemi............................ 26
 3.5.2.2. Dializ ile ekstraksiyon işlemi.. 26
 3.5.2.3. Kolon Kromatografisi(Slica gel'le doldurulmuş)................. 26
 3.5.2.4. Dietileter ile Ekstraksiyon işlemi.. 27
 3.6. İstatistiki Analizler... 27
4. BULGULAR... 28
5. TARTIŞMA ve SONUÇ .. 59
6. ÖZET... 67
7. SUMMARY.. 69
8. KAYNAKLAR... 71
9. ÖZGEÇMİŞ.. 80
10. TEŞEKKÜR.. 81
1. ÖNSÖZ

Dünya nüfusunun hızla artışı, şehirleşme ve sanayileşmenin yaygınlaşması ve toplumların kültür düzeylerinin yükselmesi hayvansal kökenli et, süt ve deri gibi ekonomik değer taşıyan ürünlerle karşı talebi artmıştır. Bu gibi nedenlerden dolayı insanların beslenmesinde önemli yeri olan, dünyada ve özellikle az gelişmiş ülkelerde büyük ölçüle varan, hayvansal protein açığını kapatma çabaları ve önlemleri içerisinde sigh yetiştiriciliği çok büyük yer tutmaktadır. Şöyle ki; sigh, insan gıda olarak değerlendirilmesi mümkün olmayan çeşitli doğal bitki kaynaklarını, tarımsal<article> content was truncated</article>
derisi elde edilmiştir (75). Bu verimler ileri ülkelerle karşılaştırıldığında aradaki farkın 5-10 misli olduğu görülmektedir. Ülkemizde elde edilen verimlerdeki bu gerilemenin ana nedenlerinden birisi sığır ırklarının islah olmadan olmasıdır. Sığır ırklarının islahi ve ekonomik değer taşıyan verimlerin sürekliliği ve artırılması ancak döl verimi ile elde edilen kuşaklar yoluyla sağlanabilir. Bu durum hayvanlarda en önemli verimin döl verimi olduğunu göstermektedir.

Hayvanlardan yüksek oranda döl verimi elde edilmesi bir çok faktör tarafından engellenmektedir. Sığırlarda üreme fizyolojisinin bütün yönlerinin tamamen anlaşılması üreme potansiyelinin tamamen kullanılamamasına neden olmuştur. Dölverimini en önemli problemlerden birisi de östrusun tam olarak zamanında tespit edilememesidir. Ürenmenin denetlenmesinde östrusun tespiti büyük bir önem taşımaktadır. Çünkü kesin bir östrus tespiti ürenmenin anahtarı rolündedir (34,44,46).

Özellikle sun’i tohumlamanın yaygın olarak kullanıldığı günümüzde gizli seyreden kızgınlıkların tespit edilememesi olumsuz bir etken olarak karşımıza çıkmaktadır. Östrusun teşhis edilememesi embriyo transferi ve sun’ı tohumlama için, boğaların bulunmadiği sürülerde temel problemlerdendir. Kızgınlığı tespit etmek için, henüz boğa kadar pratik ve kesin sonuç alınabilecek bir metod geliştirilememiştir. Östrusun tespit yöntemleri arasında yer alan, doğrudan doğruya gözlemler, Heat mount dedektörü , arama boğaları, hormon analizleri, vaginal direnç testleri ve cervical mucus testeri gibi yöntemlerin hiç birisi tamamen yeterli, güvenilir ve özel değildir. Günümüzde östrusu teşhis etmek için kullanılan bu yöntemlerle östrusu kesin belirleme oranının % 60’in altında olması,
gebek oranındaki düşüklüğün önemli sebeplerinden birisi olup, sun'ils tohumlama uygulanan bölgelerde östrusların zamanında tespit edilememesi, normal fizyolojik sınırlar içerisinde maximum sayıda yavru alınmasını engellemektedir. Oysa, daha öncede belirtildiği gibi östrusun tespiti için en etkili metod seksüel olarak tecrübe belene deneme boğaları tarafından yapılan östrus keşfedir. Boğalar kızın ineği belirlemede %95-100 oranında başarılı olmaktadırlar. Boğaların bu başarısı, ineğin taraftan çeşitli şekillerde salgılanan feromonların oral ve kokusal yolla tesbiti sayesinde olmaktadır (3,19,21,27,34,50).

Hayvanlardan yüksek oranda döl verimi alınabilmesi için kızgınlığın kesin olarak tespit edilmesiyle birlikte, tohumlamının kızgınlık sürecinin hangi evresinde yapılacağını bilinmesi de büyük önem taşımaktadır. İneklerden yeterli bir dölverimi alınabilmesi için,
tohumlamanın kızgınlığın hangi döneminde yapılması gerektiğini hususunda yapılan araştırmalarda, kızgınlığın ortasında ve ikinci yarısında yapılan tohumlamalarдан en fazla döl verimi elde edildiği bildirilmektedir (61). Feromonlar vasıtasıyla kızgınlığın başladığı an tesbit edilebilirse tohumlamanın en uygun zamanda yapılabilmesi mümkün olabilir. Böylece dölveriminilexport yönde etkileyen en önemli faktörlerden birisi ortadan kaldırılarak dölveriminin artırılması sağlanmış olacaktır.

Ayrıca feromonların çeşitli tür hayvanlarda tespit edilerek, sentetik formlarının elde edilmesi ve pratik olarak kullanılabilen bir hale getirilmesiyle, örneğin köpekleri bu kokulara karşı alıştırarak bir sürü içerisinde kızgınlık gösteren ineklerin bu köpekler yardımıyla kolayca tesbit edilmesi, dolayısıyla östrusun tespitini kolaylaştırması, ayrıca dölveriminin artırılmasında önemli rolü olan puberti yaşının karşı cinsin uyarılmasının sonucu erkene alınması, mevsime bağlı anöstrusun sonlandırılması, doğum sonu aralığının kısaltılması ve östrus sinkronizasyonu sağlaması gibi etkileri de mevcuttur (29). Feromonların bu etkilerinin dölveriminin artırılmasına sağlayacağı yararlarının ne denli büyük olduğunu herkesce takdir edilmektedir.

Bu çalışma, kızgınlık gösteren ineklerde, kızgınlığın farklı devrelerinde elde edilen vagina ve cervix akıntılarında kızgınlığın erkeğe habercisi olan feromonların varlığını ve kimyasal yapısını araştırmak amacıyla planlanmıştır.
2. GİRİŞ

2.1. Feromonun Tanımı

Kokusal haberleşme üzerine gerçek manada araştırmalar 1960'lı yılların başlarında başlamıştır. Memelilerle uğraşan bilim adamları (48, 62) entomoloji ile ilgili modeli örnekle alarak, bir hayvan tarafından salgılanan ve aynı türün diğer bir bireyi tarafından algıldığında spesifik bir reaksiyona neden olan maddeleri tanımlamak için feromon terimini kullandıklarını, bu tanımda bahsedilen spesifik reaksiyon ile ya özel bir davranışın gösterildiğini ya da endokrin veya üreme sistemindeki fiziolojik değişikliklerin ifade edildiğini, çünkü, feromonla karşı verilen cevapın ya alıcının fiziolojik durumunda bir değişiklik oluşturduğunu ya da belli bir davranışın performansı ile ilgili olduğunu bildirmektedirler.
Wilson ve Bossert (79) insektlerdeki feromonal haberleşmeyi örnek olarak feromon terimi yine yukarıdaki gibi tanımladıklarını, fakat feromonun etki şekline göre de salgı feromonları ve priming (öncü) feromonlar olarak ikiye ayırdıklarını, bu sınıflandırma göre salgı feromonlarını, ani fakat dönüşümlü bir davranış değişimine veya klasik uyarı cevap örneğindeki gibi merkezi sinir sistemince verilen bir cevaba neden olan feromonlar olarak tanımlarlarken, Priming feromonları da endokrin, üreme veya muhtemel diğer sistem fonksiyonlarını ya inhibe ederek ya da stimule ederek değiştirebilmesi için bir seri fizyolojik olayları başlatan feromonlar olarak tanımlanmışlardır.

Bununla birlikte memelilerin cinsel istek, davranış ve üreme olaylarında feromonal haberleşmenin önemli bir rol olduğunu artan bir tarzda ortaya çıktıkça salgı feromonu teriminin, feromonu alan memelilerin davranış cevaplarına göre uygun olmadığı görülmüştür(23).

Öte yandan Bronson (22) ve Izard (49) salgı feromonu teriminde ima edilen kesin cevabin memelilerin esnek davranış biçimi içerisinde her zaman gerçekleşmemiş olması nedeniyle bu terim yerine davranış cevabı uyandıran memeli feromonlarını ifade etmek için işaret feromonu terimi kullanılması gerektiğini, çünkü, bir işaret cevabin tabiatını değil sadece bilginin transferini ima eder demektedirler.

Bu bilgiler ışığı altında kimi araştırmacı (48) ve yazarlar (5, 44, 49), orijin olarak insektlerde kullanılan bir kavramın, memelilerde kullanılmasındaki doğal problemleri de göz önüne alarak, bir hayvan tarafından dışarıya salgılanan ve aynı türün diğer bir ferdi tarafından alındığında bir veya daha fazla spesifik reaksiyon doğuran
madde veya madde karışımaları olarak feromon terimini tarif etmek ve kullanmakla birlikte, kokusal duyularla özel bilgiyi ileten ve özel davranış meydana getiren anlamında işaret feromonunu ve kokusal duyularla ölçülebilen fizyolojik cevaplar oluşturan feromonlar anlamında da priming feromonunu tanımlamaktadırlar. Ayrıca Izard (49), feromon kavramının bu şekilde kullanılmasının memelilerin davranışlarını ve feromonları araştırmırken yanlış kavramların ortaya çıkmasını önleyeceğini, bu uyanırken feromon kavramının memelilerde kullanılması konusunda bazı araştırmacıların feromon terimi ve tanımini kullanmakta hala çekingen kaldıklarını ve memelilerde koklamaya bağlı haberleşmeyi ifade eden farklı terimler kullandıklarını, belirli bir ortamda fizyolojik ya da davranışa bağlı cevabin sadece koklamaya ilgili algılamalarına bağlı olmayıp görme, işitme, dokunma, tat alma duyularının birkaçının veya tümünün birlikte algılanmasına da bağlı olabileceğinin unutulmaması gerektiğini vurgulamaktadır.

2.2. Feromonların bulunduğu yerler ve etkileri

Yapılan gelen çalışmalarda, evcil hayvanlarda feromonların farklı türlerde, farklı kaynaklarda bulunduğu ve öremeyle ilgili mesajların iletildiği ve öreme fizyolojisinde etkili olduğu bildirilmekle beraber feromonların kimyasal karakteri ve nasıl üretildiği belirtilmemistiştir. Ancak son zamanlarda feromonların kimyasal özellikleri ve ihtimal dahilinde bulundukları yerlerin araştırılması hususunda çalışmalar yoğunlaşmış ve birkaç türde de kimyasal yapısı belirlenmiştir.

Feromonların hayvan organizmasında bulunduğu veya köken aldığı yerler hakkında tartışmalar hala sürdürülmekle birlikte yapılan çalışmalarla feromonların cervico-vaginal mukusda
(9,38,41,55,64,67), idrarda (1,14,27,48,50,59,70), deri bezleri ve salgılarda (15,35,63,70), perineal bezler ve salgılarda (9,12,13,14,15,63), tükrük bezi ve salgılarda (27,49,74), yap ağında (56,57,58), teke kılinda (26,72), gaitada (30,67), südde (51) ve kanda (51,52,53,54) bulunduğu tespit edilmiştir.

Adams (1), hayvanlarda feromonların bulunduğu bu salgılın ve bölgelerin kontrolünün hormonal ve sinir sistemi vasıtasıyla yapılması, feromonların hayvanlarda üretilmesi veya salgılanmasının ancak hormonal ve sinir sisteminin koordineli olarak çalışmasıyla mümkün olabileceğini dile getirmiştir.

Öte yandan feromonların alınmasıyla alicı yapıtı etkileri inceleyen araştırmacılar östrusun belirlenmesi (1,32,35,47, 55,57,64), mevsimsel anöstrusun sonlandırılması (56,57,58,71), pubertenin kısıtlanması (27,47,48,49,71,76), pastpartum anöstrusun kısıtlanması (48,49,80,) ve östrus sinkronizasyonu (48,56,57,58) üzerine feromonların küçünsenemeyecek kadar etkili rolleri olduğunu bildirmektedirler.

2.2.1. İşaret (davranış,ani tepki uyandırılan) feromonları

İşaret feromonlarının alınmasının oral ve kokusal yollarla olduğu, bir çok memeli tür erkeklerinin kokusal incelemeyeyle dişi genital organlarının değişiminini veya karakteristik östrus davranışlarından önce proöstrustaki dişleri belirleyebildikleri, bunu da rutin olarak dişilerin anogenital bölgelerini koklayıp, idrar veya cervico-vaginal mucusu analiz ederek sağladıkları, evcil hayvanlar arasında böyle araştırmacı davranışların at, koyun, keçi veciąglar arasında mevcut olduğunu bildirmekteydirdir (32,39,49,70).

İneklerde seksüel davranışların önemli derecede açığa çıktığı dönem östrus safhasıdır. Bu dönemdeki ineklerin boğalara yakınılığı,
boğaları etkilediği gibi ineklerdeki östrus davranışları da boğanın ve diğer kızgın ineklerin varlığından etkilenmekte ve kızgınlık davranışları ortaya çıkmaktadır (45,67). Boğalar ise, proöstrusta bulunan ineklerin salgıladığı kokulu maddeleri flehmen yol ile vomeronasal organa ulaştırılarak östrusu başlangıçta tespit edebilmektedirler (1,32,35,48,67).

Estes (32)'e göre vomeronasal organ, bilateral kör bir kese olup sığır, koyun ve keçilerde nasopalatin kanala açılan, hayvanlar arasında seksüel aktivitenin koordinasyonu ve üremeyle ilgili mesajların tanınamasında rolü olan özel kemoreceptörleri bulunan bir organ olarak tarif edildikten sonra flehmen davranışı da nefes alma ve dilin damak üzerine yaptığı ani okşama hareketleri ile oral boşluktan vomeronasal organa hava ile birlikte transfer edilen feromonların kimiyasal analizi olarak bildirilmektedir.
Jacobs ve ark. (50) yaptıkları çalışmada, boğanın kendisini kabuledecek dişiyi genital kanal sıvılarındaki bilgilere göre tanıdığını ve ilgisini ona göre yönlendirdiğini, dişin cervico-vaginal sekresyonundaki veya idrarındaki feromonların, boğanın seksüel davranışlarının bir parçası olan, flehmen davranışını vasitasıyla vomeronasal organın reseptörlerine taşınarak orada belirlendiğini, flehmen olayında vomeronasal organ içerisinde vaginal sekresyon veya idrarın incelenme mekanizmasını anlamak için sinematografi ve yavaş-hareket (freeze-frame) tekniği ile Brahman boğalarının östrojen uygulanmış ineklerin vulvasını kolkarken yaptıkları ağız ve dil hareketleri gözlemediğinde, boğaların önce dili eğerek sert damağa bastırdığını, dilin gövdesini ağızdan dışarıya çıkardığını, dilin bu durumunu sürdürürek ileriyi doğru hareket ettiğini, dilin bir kez kesici dişler ve papilla'ya (nasopalatin kanal) ulaştıktan sonra geri çekilerek eğik kısmının geşetildiğini, dilin sert damağa bastırmışsyla yapılan vuruşun 2-6 kez tekrarlandığı ve her darbenin 1/4 - 1/2 saniye süredğini tesbit etmişlerdir.

Öte yandan boğaların flehmen davranışları, nasopalatin kanalın tıkanması öncesinde ve sonrasında değerlendirildiği zaman, flehmen cevaplarının sayısının değişmediğini, fakat flehmen davranış süresinin tıkanmadan sonra arttığı gözlenmiş olup, nasopalatin kanalın tıkanması östrusun tespitini engelleyememiştir. Bunun sebebinin ise, östrusun tesbitinin ya ana koklama sistemi yoluya ya da damağa dille yapılan basınç ve sıvazlamalarla vomeronasal organda kısmi bir emmeye sebep olunarak oral ve nasal boşluktan feromonların girmesine imkan sağlamasından kaynaklandığı düşünülmektedir. Bununla birlikte sığırılarda östrusun keşfinde koklamanın rolü üzerine ihtilaflı görüşler de vardır. Çünkü boğaların
kokuya bağlı araştırmalarında hem esas koklama sistemlerini hem de ek koklama sistemlerini kullandıkları ayrıca vomeronasal organ ve flehmen davranışının kızgınlığın keşfinde önemli rol oynamakla beraber yeterli olmadığı, esas koklama sisteminin rolünün ve öneminin henüz tesbit edilememesi yüzünden bu ihtilafi görüşlerin ortaya çıktığı bildirilmektedir (49,50).

Hradecky ve ark. (43) sığırlarda östrus siklusu boyunca boğanın flehmen reaksiyonlarının durumunu incelemek üzere yaptıkları çalışmada, boğalarda flehmen reaksiyonlarının sadece östrusa has spesifik reaksiyonlar olmayıp, östrus siklusunun diğer safhalarında da oluştuğunu, boğanın inekler arasına salındığında ilk önce onların dış genital organlarını kokladığını ve çekici bir koku bulursa inekin perivulvar alanına burnunu sürterek onu, urinasyon yapmaya zorladığını, inek urinasyon yapın veya yapmasın, bu kısa fiziksel temas ineğin seksüel siklusta bulunduğu safhaya balmaksızın boğanın ani flehmen oluşturmasına neden olduğu, burnunu sürme davranışı aynı zamanda boğanın ağız-burun çevresinde perivulvar deri yağlarının yayılması sağlanamakta olup inek urinasyon yapmadiği takdirde boğanınusal boşluğu içerisine uçucu ve kokulu bileşiklerin (feromonların) girmesine sebep olduğu, yine burun sürtmenin çok hızlı ve yoğun bir reflex oluşturulup ineğin external organlarının hiperemisine ve uyarılmasına neden olarak ineklerde kokulu bileşiklerin gaz haline geçmesine veya buharlaştmasına yardımcı olduğu bildirmekte olup bunun da östrus feromonlarının hem sınırlı bir süre içerisinde oluşmakta olduğunu hem de östrus dışında da sınırlı sayıda meydana geldiğini ve flehmen’in östrusla ilişkili kokular için tek başına spesifik bir cevap olmayıp, östrusun 4 gün
öncesine ve 3 gün sonrasına kadar flehmen davranışının yapıldığını bildirmektedirler.

Geargy ve Reeves (37) yaptıkları çalışmada, boğaların kızgınlık gösteren düzeyeye karşı oluşturduğu flehmen davranışlarının kızgın olmayanlara karşı oluşturduğundan farklı olmadığını, koku sisteminin veya kokuya kızgınliğin tespitinin yetersiz olduğunu ve kızgınlık gösteren düvelerin birbirlerine atlama davranışlarının boğalar üzerinde kokularından daha fazla uyarıcı etki yaptığı tesbit etmişlerdir. Yine Geargy ve ark. (36) yaptıkları diğer bir çalışmada, diöstrüs ve östrustekti düvelerle birlikte bulundurulan boğalar tarafından meydana getirilen flehmen sayıları arasında fark bulunmadığını ve bu sonucuna göre de boğa ile inek arasında fiziksel bir temas bulunmadığı zaman boğaların östrustekti ineği ayırdedemediğini bildirmektedirler.

Houpt ve ark. (42) tarafından yapılan araştırmada, bazı boğalar tarafından kızgınltaki ineğin idrarına karşı oluşturulan flehmen reaksiyonları sayısının, diostrustekti ineğin idrarına karşı oluşturulan flehmen reaksiyonları sayısından daha fazla olduğu ileri sürmektedirler. Oysa Albone ve ark. (4) ve Blazquez ve ark (14) boğalar için koklamanın önemli olduğunu ve boğaların en erken östrusttan 4 gün önce kokusal araştırmalar yoluya kızgınlık gösterecek inekleri tespit edebildiklerini vurgulamışlardır.

French ve ark.(35) boğaların koklamayla birlikte görme, duyma ve tat alma duyularını da kullanarak proöstrus ve östrustaki inekleri tespit edebildiklerini ve özellikle görme duyusunun seksüel davranışların kesin görüntüsünün oluşmasının ani ve direkt kontrolü üzerine önemli bir rol oynadığını savunmaktadır.
Bockey(17) ve Williamson ve ark.(78)'ın yaptıkları araştırmalarda, merada kızgınlık gösteren düvelere birlikte bulunan boğaların bu düvelerin birbirlerine atlama, koklama, yalama, takip etme, çenelerini sağrı üzerine koyma davranışlarını görmeleriyle, onların kızgınlıkta bulunduğu tespit ettiklerini öne sürmekteirdir.

Dehnhard ve ark. (28) kızgınlık siklusun esnasında 10 inekten idrar örnekleri toplayarak ratların biyolojik denemesi yoluyla feromon aktivitesini araştırdıklarında maximum feromon aktivitesinin kızgınlıktan bir gün önce görüldüğünü tespit etmişlerdir.

Ladewig ve Hart (59), inek idrari üzerine yaptıkları çalışmada kızgin ineklerin idrari ile kızgin olmayan ineklerin idrarinı ratlara koklattıklarında %65 oranında doğru olarak kızgınlığı ayırdedebildikleri sonucuna varmışlardır.

Dehnhard ve Claus (27), ineklerin östrus ve diöstrus devrelerinde alınan idrarlarındaki kokusal farklılığa karşı ratların reaksiyonlarını değerlendirdiklerinde, hem östrus hem de diöstrus kokusuna karşı ratların doğru cevapları arasındaki farkı istatistiki açıdan önemli bulmuşlardır (P< 0.0001).

Hawk ve Conley (41), kızgınlık gösteren ineklerin vaginal mucus, süt, kan ve idrar örneklerindeki östrusla ilgili kokuları eğitilmiş köpekler kullanarak belirlemek için 4 ayrı deney yaptıklarını, bu deneyler sonucunda östrus ve diöstruste bulunan ineklerin sütlerinden faydalanarak eğitilmiş köpeklerin gösterdikleri reaksiyonlara göre ineklerin siklusun hangi safhasında olduğunu tespit edebildiklerini bildirmişlerdir.

Kiddy ve ark. (54) sütçü ineklerden kızgınlık gösterenleri tespit etmek için, kızgin ve kızgin olmayan ineklerin vulva ve vestibulumuna yerleştirilen süngekerleri, vaginanın derin kısmından elde ettikleri sıvıları, normal urinasyon sonucu elde edilen idrari, kateter yardımıyla vesica urinariadan aldıkları idrari, sütü ve kan plazmasını köpeklerle koklatarak alıştırdıklarında, köpeklerin kızgin ineklerden elde edilen materyale yukarıdaki sıraya göre %97, 86, 96, 97, 99 ve 94 oranında reaksiyon verirken kızgin olmayan ineklerden elde edilenlere
karşı yine yukardaki sırasıyla % 2, 1, 1, 1, 1 ve 8 oranında reaksiyon gösterdiklerini ve sonuç olarak ineklerde östrusla ilişkili kokuların vücut sıvılarıyla yayıldığı görününü ileri sürmektedirler.

Kiddy ve Mitchell (53), ineklerde kızgınlığın karakteristik kokusunu belirlemek için, eğitilmiş bir Cathovla leopard çoban köpeği ile 3 Alman Shepherd köpeğini üç farklı deneyde kullanarak östrusla ilişkili kokuların ilk kez ne zaman açığa çıktığını, ne zaman kaybolduğunu ve ne kadar müddetle devam ettiği tesbit etmek amacıyla östrus siklusu boyunca Sünge emdirilmiş vaginal sıvıları kullandıklarını, sonuçta östrus kokusunun östrusdan 3 gün önce yavaşça salındığını, östrusta hat safhaya ulaştığını ve östrusdan sonra 1 gün içinde kaybolduğunu belirlemişlerdir.

Kiddy ve ark. (52) eğitilmiş köpekleri kullanılarak ineklerde östrusla ilişkili kokuların keşfedildiği konulu çalışmalarda ineklerin kızgınlığa has koku ürettilerini ve bu kokuların eğitilmiş köpekler tarafından belirlenebileceğini bildirmişlerdir.

Bir çok türde feromonların en önemli kaynaklarından birisi olan deri bezleri sığırlarda vulva ve perineal bölgesinde bulunmaka olup boğaların burunlarını vulva ve perineal bölgeye burun sürümeleri feromonların bu bölgede bulunduğunu veya salgıladığını göstermektedir (63).

Rivard ve Klemm (70), ineklerin östrus devresindeki feromonları ihtiva eden vücut sıvıları üzerine yaptıkları bir çalışmada, feromonların ya vulval deri bezlerindeki feromonları yoğunlaştırıcı özel kısımlardan veya vulval deri bezlerinden ya da herhangi bir diğer kaynaktan köken alarak kan yoluyla bütün organizmaya yayıldığını bildirmektedirler.
Blazquez ve ark. (15) boğanın ineklere karşı davranışlarını araştırmak amacıyla yaptıkları çalışmada, östrus sinkronizasyonu uygulanmış iki inek ve bir boğayı bir arada tutarak, inekler östrus sıklusunun ortalarında iken birinin perineal bölgesinde adrenalin, diğerinkine su enjekte ederek boğanın seksüel davranışını izlediklerinde, boğanın adrenalin uygulanan ineğe karşı gösterdiği seksüel davranışlarının (yalama, burun sürtme, koklama, vulvaya masaj ve flehmen), su uygulanan ineğe oranla daha fazla olduğunu ve bunun sonucu olarak üremeyle ilgili mesajları içeren feromonların kaynaklarının deri bezleri olduğunu belirlemişlerdir.

Bir boğanın feromonal etkiden dolayı meydana getirdiği seksüel davranışının boğanın direkt perineal bölgeye yönelmesinden sonra oluşması, kokusal işaretlerin ineklerin genital kanalından kaynaklanan salgılardan, perineal deri bezleri veya idrardan bulunduğuun işaretidir (14).

Blazquez ve ark. (13) 16 haftalık 10 adet Friesian x Hereford düveyi iki gruba ayırarak 1. grupta bulunan düvelerin kulak altına östradiol-17 beta uygulayıp 2. grubu kontrol grubu olarak kullandıklarını, perineal ve boyun bölgesi bezlerindeki gelişmeyi incelediklerinde perineal bölgedeki ter ve yağ bezleri hacminin kontrol grubuna göre daha büyük olduğunu (P< 0.01), neticede östrojen hormonunun perineal deri bezlerini aktive ederek bu bölgede var olan kokulu maddelerin (feromonların) kızgınlıkta salgılanıpını ileri sürmektedirler. Yine benzer bir araştırma (12) sonucuna göre de, ineklerin perineal bölgesindeki deri bezlerinin kokulu maddelerin (feromonların) salgılanıdı özel deri bezleri olarak dikkate alınması gerektiği bildirilmektedir.
Klemm ve ark. (55) östrusa yaklaşmış ve östrusta bulunan 140 inekten topladıkları cervico-vaginal mucus örneklerini saflaştırarak, gas kromatografi-mass spektroskopisi kullanarak bioassay ile değerlendirildikten sonra, boğalarda koklama, yalaması, flehmen, penis kasılması ve preputial sekrasyona neden olan alkol, diol, primer amin, aromatik alkenden oluşan dokuz bileşik tespit ettiklerini buna bağlı olarak cervico-vaginal mukusun feromon veya feromonları ihtiva ettiği savunmaktalar.

Nishimura ve ark. (64) östrus gösteren düvelerin vaginal mucusunda feromonları araştırmak için yaptıkları çalışmada, hem östrusta hem de düöstrustaki düvelerin cervico-vaginal mucusunu toplayarak bu mucuslarda bulunan aşım işaretleri olan maddeleri (feromonları) ayırarak için dializ ve ion-exchange kromatografisi kullanarak biological assay sonucu elde ettiğlerini bulgulara göre feromonların düşük moleküler ağırlığa sahip nötral maddeler olduğunu ve cervico-vaginal mucusta bulunduğunu tespit etmişlerdir.

Paleologou (67), östrusta bulunan ineklerin cervico-vaginal mucusunu geniş bir kaba koyarak ve yapay inek maketinin caudal kısmına mucusu sürekli boğaların davranışlarını incelendiği çalışmada boğaların seksüel olarak uyarıldığına ve feromonların cervico-vaginal mucusta bulunduğuna işaret etmektedir.

Donavon (30), östrustaki ineklerin gaitalarının da boğalar için çekici olduğunu, yani bunların da feromonları içerdığını bildirmektedir.

Blissitt ve ark. (16)'nin koyun idrarındaki östrusla ilgili kokuların koçlar tarafından ortaya çıkarılması konulu çalışmalarında, koçların östrustaki koyunları tespit etmek için koklama duyularını kullandıklarını, östrus gösteren ve göstermeyen koyunların idrar
kokularının ayırının koçların koklama kabiliyetine bağlı olduğunu, koçların östrustaki, östrustan 1-6 gün önceki ve östrustan 4-10 gün sonraki devrede bulunan koyunların idrar kokusu arasındaki farkı belirliyebildiklerini, ancak koçların kızgınlıkta bulunan farklı koyunların idrar örnekleri ile kızgınlıktaki ve kızgınlıktan 1-3 gün sonraki koyunların idrar kokusu örnekleri arasında ayrım yapamadıklarını netice olarak koyunların kızgınlık devresinde idrarlarında bulunan feromonlar vasıtasıyla koçlara kızgınlıklarını bildirdiklerini ve bu kokuların kızgınlıktan 4 gün sonra kaybolduğunu bildirmektedirler.

Lindsay (60), koçların çiftleme davranışlarında kokusal uyaranın önemini araştırdığı çalışmada, kızgınlık gösteren koyunları belirleme yeteneklerini karşılaştırmak için koku alma yeteneği bulunmayan (anosmik) iki koç ile normal iki koçun, eşit sayida kızgınlık gösteren ve kızgınlık göstermeyen koyunların bulunduğu iki grup içerisinde çiftleşmeleri için bırakıldığını, normal koçların her iki grup içerisinde de kızgınlık gösteren koyunları ayırd edebildiklerini (P < 0.001), anosmik koçların ise kızgınlık gösteren koyunları ancak kendilerine aşığı zaman onların kaçmamasıyla belirliyebildiklerini, netice olarak koçların östrustaki koyunları koku alma yoluya teşhis edebildiklerini vurgulamaktadır.

Bland ve ark. (9), koyunların östrus siklusunun farklı safhalarında elde ettikleri vulvo-vaginal sekrasyonlarında ve idrarlarında uçucu veya uçucu olmayan östrus işaretli olan feromonları gas-kromatografi ile belirlemek istediklerini fakat başarısız olduklarını, bununla birlikte feromonların steroid, yağ asidi, keton, aldehid, amid, amin, fenol, diol ve alkol gibi düşük moleküller ağırlıkta olmadığını bildirmişlerdir.
Goodwin ve ark. (38) dişi köpeklerin kızgınlığa girdikleri zaman dışarıya özel koku veya kokuları saldıklarını bu koku veya kokuların erkek köpekleri etkilediğini ve dışişe karşı kur yapmasını sağladığı, erkekleri etkileyen bu kokulu maddelerin kaynaklarının kesin olarak bilinmediğini, vagina, idrar, her ikisi veya bu bölgelere yakın diğer anatomik organlar üzerinde bir çok çalışmalar yapıldığını, bu çalışmaların birinde östrüşteki dişi köpeklerin vaginal sekresyonlarını analiz edilerek Methyl P-hy droxylbenzoate bulunduğunu, hiç çiftleşmemiş dişilerin veya anöstrüste bulunan dişilerin vulvarlarına bu bileşinin çok az miktarları sürülerek erkek köpeklerle bir arada tutulduğunda erkek köpeklerin tahrik olduğunu ve atlama teşebbüsünde bulunduğunu tespit etmişlerdir.

2.2.1.1. Cervico-vaginal mucusun fiziksel ve kimyasal özellikleri

Sığır cervico-vaginal mucusunun fiziksel ve kimyasal özellikleri ve dışarıya çıkış yolu üzerinde birçok kontaminasyonlara maruz kalması feromonların kimyasal yapısını belirlemek için yapılan çalışmaları etkilemekte, hatta bu özellikler dikkate alınmadan yapılan çalışmaların çoğunun sonuçuz kalmasına neden olmakta, bu yüzden sığır cervico-vaginal mucusunda feromonları araştırırken mucusun fiziksel ve kimyasal özelliklerinin de incelenmesi gerekmektedir (4,43,55,70).

Hayvan östrusta iken östrojen hormonunun etkisi altında kaldığından dişi genital organlarda vasodilatasyon ve vaskülarite artışı meydana gelmektedir (73). Dolayısıyla cervico-vaginal mucusun fiziksel ve kimyasal özelliklerini dolaşımda bulunan östrojen seviyesi etkilemekte olup cervico-vaginal mucus, vestibule'de bulunan major vestibular bezler (Bartholin bezleri), serviks bezleri ve
endoserviks'in epithelial hücreleri tarafından salgılanmakta, mucusun hacmi ve yoğunluğu ovaryum hormonları tarafından kontrol edilmektedir (2,39).

Asotra ve ark.(7)'nin ineklerin östrus siklusu esnasında cervico-vaginal mucustaki değişiklikler üzerine yaptıkları çalışmada, östrus esnasında cervico-vaginal mucusun kuru madde miktarının % 1-2.5 arasında olduğu ve siklus ilerledikçe kuru madde miktarının artığı, mucusun renginin genellikle renksiz ve saydam olduğu ve östrus siklusu ilerledikçe renklendiği östrusunun % 1 gün sonra kirli renksiz, bu renkten sonra kırmızımsı ve daha sonra kirli beyaz olduğu, mucusun pH'sinin ise östrusta 8.02-8.19, diöstrusta 7.88-8.13 arasında değiştiği bildirilmektedir.

Hamana ve ark. (40)'nin sialik asit ve şişir servikal mucusunun bazı fiziko-kimyasal özellikleri üzerine yaptıkları çalışmada, kızgınlıktan iki gün önce ve bir gün sonraki dönemde mucusun renginin genellikle saydam veya sadece beyazımtrak renkte, ve birkaç örnekte de beyaz veya sarı renkte olduğu, cervico-vaginal mucusun su miktarının östrus öncesi kademeli olarak artarken, östrus sonrasında yine kademeli olarak azaldığı, östrusta cervico-vaginal mucusun su miktarının % 98-99 arasında değiştiği ve vizkozitesinin de proöstrus safhasında azalırken bu safhadan sonra derece derece arttığı ve ayrıca östrusta cervico-vaginal mucusun pH'sının da 7.0-9.2 arasında değiştiği vurgulanmaktadır.

Boyland (20), yaptığı araştırmada, östrus esnasında elde ettikleri mucusun kuru madde miktarının % 1-1.5, diöstrus esnasındaki ise % 2-3 arasında olduğunu tespit etmiştir.

Scott Blair ve ark. (73) yaptıkları bir araştırmada, elde ettikleri şişir cervico-vaginal mucusunun kuru madde miktarını
östrusta ortalama % 1.2, diöstrusta ortalama % 2.4 ve gebelikte ise ortalama % 15.9 olarak bulunduklarını, mucusun kuru madde ile vizkozitesinin östrusta minimum seviyede bulunduğu, cervico-vaginal mucusun pH'sinin östrus siklusu boyunca 6.5-7.0 arasında seyredерken kızgınlıkta 7.6-8.1 arasında değiştiğini bildirmektedirler. Olds ve VanDemark (65), sağır dişi genital organlarındaki luminal sıvılar üzerine yaptıkları araştırmada, cervico-vaginal mucusun pH'sının ortalama 7.8 olduğunu hesaplamışlardı. Yine Olds ve VanDemark (66) yaptıkları diğer bir çalışmada, sağır cervico-vaginal mucusu pH'sının östrus dışında siklus boyunca 6.5-7.0 arasında, kızgınlıkta ise 7.6-8.1 arasında değiştiğini, kuru madde miktarının kızgınlıkta ortalama % 1.2, diöstrusta ortalama % 2.4 ve gebelikte de % 15.9 olduğunu tespit etmişlerdir. Arya ve Jain (6), Jersey ırkı inekleri iki grubu ayırrarak bu gruplarda cervico-vaginal mucusun kuru madde miktarını ve pH'sını 1. grupta sırasıyla ortalama % 1.47±0.076, ve 8.12±0.106, 2. grupta ise yine sırasıyla ortalama % 1.88±0.096 ve 7.91±0.118 olarak bulmuşlardır.

Sığır servikal mucusu üzerine Klemm ve ark.(55)'nin yaptıkları çalışmada ise östrusta servikal mucusun pH'sinin östrus siklusunun diğer dönemlerine oranla daha çok asidik olduğunu (pH 6.5-6.7), total protein miktarının en az, su miktarının en çok olduğunu, mineral maddelerden Na, Cl ve Mg miktarının östrus esnasında siklusunun diğer dönemlerine oranla artarken, Ca, K ve yağ miktarlarında azalma görüldüğünü ileri sürmektedirler.

Paleologou (68) yaptığı çalışmada, östrusta elde edilen cervico-vaginal mucusun renginin genellikle saydam ve renksiz, vizkozitesinin sulu, kuru madde miktarının ortalama % 1.4, su
miktarının ortalama % 98.6, pH'sinin ortalama 6.7, Na miktarının ortalama 12.17 mEq/1, K miktarının ortalama 115 mEq/1, Ca miktarının ortalama 9.8 mg/100ml ve Mg miktarının da ortalama 4.2 mg/100 ml olduğunu tespit etmiştir.

2.2.2. Öncü (Priming) Feromonlar

Yaşları yaklaşık 10 aylık olan 15 prepubertal etçî ırk duvenin oronasal bölgesinde haftada bir kez feromon ihtiva ettiği bildirilen 3ml boğa idrari sprey edilirken, 19 duveye de su sprey edildiği, 7 hafta sonra hem idrara hemde suya karşı maruz kalan duveleri rectal muayene ovaryum aktivitesinin başlantı başlamadığına göre ayrıldıklarında idrar ile tedavi edilenlerin % 67'sinin su ile tedavi edilenlerin ise % 35'inin puberteye ulaştığı, neticede boğa idrarında feromonların bulunduğu ve duvelerde puberte başlangıcını hızlandırdığı bildirilmektedir (27,47,76).

Roberson ve ark. (71), yaşları ortalama 287±2 gün olan 52 duveyi boğalarla birlikte, yaşları ortalama 286±2 gün olan 51 duveyi de boğalardan ayrı tutarak puberteye ulaşma oranı, puberte yaşısı ve ağırlığı yönünden incelediklerinde, iki grup arasındaki farkın önemsiz olduğu, söz konusu özellikler üzerine ergin boğaların etkili olmadığı sonucuna varmışlardır.

Izard (49), yeni doğum yapmış ineklerin ovaryum aktiviteleri üzerine boğaların etkili olduğunu, vasectomize boğalarla günde 3-4 saat birlikte tutulan ineklerin, boğalardan ayrı tutulan ineklere göre daha erken kızgınlık gösterip gebe kaldıklarını ileri sürmektedir. Benzer bir çalışmada (80), doğumu müteakip boğalarla birlikte tutulan ineklerde postpartum anöstrus döneminin kısıldığı (3 gün-53 gün) görülmuş, fakat bu sürenin azalmasında boğa feromonların etkisi olup olmadığını bilinmediği, çünkü postpartum
anöstrus süresinin kısalmasında beslenme, yaş, hastalıklar gibi bir çok faktörün rol oynadığı bildirilmektedir.

Izard ve Vandenberg (48), araştırma grubu olarak 47 ve kontrol grubu olarak da 92 düzle alarak, kızgınlık gösteren ineklerden toplanan idrar ve cervico-vaginal mucusun bir karışımının PGF_{2-alfa} enjeksiyonundan sonra oronasal yolla araştırma grubundaki düvelere tatbik edildiğini, bu hayvanların kızgınlığın başlamasından 12 saat sonra tohumlandığını, kontrol grubundaki düvelere ise oronasal yolla su uygulandığını ve yine östrusun başlamasından 12 saat sonra tohumlandığını, bu düvelerdeki etkilenme, kontrol grubundaki düvelerin etkilenmesiyle karşılaştırıldığını zaman araştırma grubundakilerin daha erken östrus gösterdikleri ve PGF_{2-alfa} enjeksiyonunu müteakip daha çok duvenin östruslarının sinkronize edildiği, elde edilen bu bulgulara göre de östrus gösteren ineklerin cervico-vaginal mucus ve idrarının feromonları ihtiva ettiği ve bu feromonların da ovaryum fonksiyonlarını etkilediği belirtilirken yine aynı araştırmada vasectomize böğalarla birlikte tutulan ineklerde servis periyodu süresinin feromonal etkiden dolayı yaklaşık 35 güne kadar kısalıdığını bildirmektedirler.

Roberson ve ark. (71), prepubertal kuzular arasına ani olarak koçların katılmasıının puberte yaşını etkilemediğini ve sinkronizasyonun koç feromonlarının dışide ovaryum faaliyetleri üzerine etkisinden kaynaklandığını ileri sürmektedirler.

Knight ve Lynch (57) toplam 49 koyundan, 14’ünü iki koç ile birlikte üç gün tutarak, 18’ine koçların idrarını günde altı defa olmak üzere üç gün süreyle spray ederek ve 17’sine ise benzer şekilde su spray etmek suretiyle yaptıkları çalışmanın sonunda, loparoskopy metoduyla ovulasyon sonuçlarını sırasıyla % 40, 22 ve 0 olarak elde
ettiklerini, aynı kişiler çalışmalarını devam ettirerek 26 koyunu 4 koçla birlikte 3 gün tuttuklarını, koçların böğürlерinden kırpılarak alınmış yünleri 29 koyunun burun çevreleri üzerine 1. ve 2. günler birer dakika tuttuklarını, 3. gün bu yünleri koyun ağlarının çevresine serptiklerini, aynı gruptaki koyunların burun çevreleri üzerine koçların göz çevrelerinden aldığları kazıntıları ovalıyarak sürdüklerini, 3. gruptaki 30 koyunu ise koçlardan aynı tuttuklarını, 3 günlük uygulama sonucunda ovulasyon oranını gruplara göre sırasıyla % 50, 48 ve 7 olarak bulduklarını bu çalışmalarla göre koçların yünlerinde ve göz çevrelerindeki kırılder bulunun feromonların çiftleşme mevsiminin erken devrelerinde ovulasyon amacıyla koyunları uyararak için kullanılabileceğini, yine bu sonuçlara göre, koç idrarında bir miktar uyarıcı edici feromon bulunmasına rağmen bu uyarıcı feromonların asıl kaynağından idrar olmadığı vurgulanmaktadır.

Dorset irk koyunlar üzerinde yapılan bir çalışmada (56), Dorset koçlarının göz çevresinden ve yırağıstından hazırlanan preparatlar koyunların ağız ve burun delikleri civarına uygulandığında, bu hayvanlarda ovulasyonun uyarıldığını yani erkek feromonlarını içeren koç preparatlarının koyunlara uygulanmasıyla özellikle anöstrusta bulunan dışilerin ovaryum aktivitelerinin uyarıldığını ve bu uyarımda koklamayla alınan feromonların tek başına bile etkili olduğu iddia edilmektedir.

Knight ve ark. (58) çiftleşme mevsimi öncesinde henüz ovulasyon oluşturmuş koyunların ağız ve burun çevresine Dorset koç yırağıstını ovalıyarak % 40-53'ünün 4 gün içerisinde ovulasyon oluşturduğunu tespit etmişlerdir.

Claus ve ark. (26) mevsime bağlı anöstrusta bulunan keçilerde erkek kokusunun ovulasyon uyarması ve LH salgısı üzerine etkisini
araştırmak için yaptıkları çalışmada, teke kilinin feromonlarını kapsadığını ve bunların da keçilerde siklik aktivitenin yeniden başlamasını uyardığını, keçi kilinin ekstraksiyonu sonucu 4-ethyl-dalli yağ asiti tespit ettiklerini ve bulunan 4-ethyloctanoic acid'in teke kokusu ve teke etkisinden sorumlu feromon olduğunu belirtmişlerdir.

Sasada ve ark. (72) yaptıkları çalışmada, 8 ergin Saanen ve Yerli Japon tekelerinin baş ve boyun kollarından izole edilen kokunun yapısını 4 Ethyl-dalli yağ asidi olarak belirtirken, bu yağ asidinin sentetik versiyonunu bir sopaya sürülerek östrüsta bulunan keçilerre yaklaştırdıklarında, keçilerin bu madde ile kaplı sopayı kokladıkları gözlenirken, başka bir madde ile kaplı olanla karşı hiç bir reaksiyon göstermediklerini, ayrıca kastre edilmiş erkeğe bu sentetik materyal sürüldüğünde kızgın dişilerin ilgi gösterdiğini de gözlemmiştir.

Domuzların testisinde sentez edilen 5 alpha-androst-16-en-3-one ve 5 alpha-androst-16-en-3 alpha-ol steroidleri domuzların tükükleriyle salgılanan feromonlar olup dişi domuzların ovaryum faaliyetleri üzerine etkili olduğu belirtilmektedir. (27,74).
3. MATUREAL VE METOT

Bu çalışmada, Elazığ ilinin kenar mahalleleri ve yakın köylerinde yetiştirilen yaşları 3-11 arasında değişen, Holştayn, Montofon, Simental ırklarıyla bu ırkların mezelerinden oluşan ve kızgınlık gösteren 197 inekten 104 ineğin cervico-vaginal mucusu materyal olarak kullanılmıştır. Kızgınlık gösteren 93 inekten ise cervico-vaginal mucus rectal masaj yöntemiyle elde edilememiştir.

3.1. Kızgınlığın teşhisi

İneklerin kızgınlıklarını ve kızgınlığın hangi safhasında olduğu hayvan sahibinden alınan bilgilerin yanında mutat kızgınlık belirtilerine bakılarak belirlendi. İnekte kızgınlık belirtilerinin kısa sürmesi, değişken olması bazılıarda da gizli seyretmesi kimi zamanlar problem şeklinde etmiştir.

İneklerin sınırlı ve huzursuz olması, böğürmesi, diğer ineklerin üzerine atlaması, diğer inekler kendisinin üzerine atladığı zaman sakin durup kaçmaması, kolay heyecanlanması, vulvanın nemli hafif ödemli olması vaginanın nemli yapışkan, parlak ve hiperemik olması, cervix ve vaginanın yumurta ağı kıvamında saydam, müköz bir akıntı gelmesi, serviks’in açık olması, vulva, clitoris ve sağının iki tarafına maniplasyon yapıldığında hayvanın bundan hoşlanıp kaçmaması, özellikle rectal muayenede cervix ve vagina üzerine cranialden caudale doğru masaj yapıldığında akıntıının gelmesi ovaryum üzerinde Graaf follikülü’nün bulunması kızgınlığın teşhisinde yararlanılan belirli belirtiler olmuştur. Bazı ineklerde akıntıının içerisinde iplik şekilli kan lekeleri rastlanması kızgınlığın bir kaç gün önce bittiğinin belirtisi olmuştur.
3.2. Cervico-vaginal mucusun toplanması

Kızgınlığın başında 43, ortasında 41 ve sonunda 20 ineğin cervico-vaginal mucusu rectal masaj yoluyla steril rodajlı cam erlenmayerlere alındı. İneğin kızgınlığı teşhis edildikten sonra eldiden geçirilmiş sağ elle rectuma girişip rectum boşaltıktan sonra vulva ve çevresi kağıt havlu veya pamuk yardımıyla temizlendi. Serviks uterinin cranialinden başlamak suretiyle cranialden caudele doğru masajlar yapılırken bir yardımcı tarafından tutulan rodajlı 50 cc'lik erlenmayerler içerisinde serviks ve vaginanın gelen akıntı alınarak aşızları kapatıldı.

Kızgınlığın farklı devrelerinde toplanan örnekler boğa denemesine tabii tutulduktan sonra fiziksel özellikleri belirlenerek kaydedildi. Daha sonra kızgı ineklerden elde edilen cervico-vaginal mucuslar kimyasal analizlere başladıncaya kadar -15 ile -20 °C arasında muhafaza edildi.

3.3. Örneklerin fiziksel ve kimyasal özelliklerinin tayini

3.3.1. Renk tayini

Cervico-vaginal mucusun rengi iki kişi tarafından gözle muayene edilerek saydam ve renksiz, kirli renksiz, sarımsı, beyaz, kırmızımsı diye sınıflandırıldı.

3.3.2. pH tayini

Cervico-vaginal mucusun PH'si Beckman Zeromatic SS-3 Model pH metre ile ölçüldü. pH metre, pH'si bilinen alkali standard solüsyon ile ayarlandıktan sonra aletin elektrodunun cervico-vaginal mucus içerisine daldırılmasıyla cervico-vaginal mucusun pH'sı aletin göstergesinden okunarak kaydedildi.
3.3.3. Vizkozite tayini

Cervico-vaginal mucusun vizkozitesinin tayini yine gözle mucusun aşiğanlığına göre "0"dan başlanarak "4"e kadar beş sınıf altında sınıflandırıldı. Şöyle ki;

"0" çok suyu ve aşiğan,
"1" çok az yöğun,
"2" orta derecede yöğun ve yazışkan,
"3" katı kivamlı yazışkan,
"4" oldukça kalın, kur ve jelöz yapıdadaki mucuslar

3.3.4. Su ve kuru madde miktarı tayini

Su ve kuru madde miktarı 1 gr Cervico-vaginal mucus 48 saat süreyle 110 °C'lık etüvde bekletildikten sonra oluşan ağırlık azalması ve kalan kısmın tartılamasıyla tespit edildi.

3.3.5. Mineral madde tayini

Cervico-vaginal mucusun içerdği K, Na, Ca ve Mg miktarlarını tayin etmek için önce örnekler derişik H₂SO₄ ile çözüldü. Daha sonra Atomik Absorbsiyon ve Atomik Emisyon spektroskopisi ile bu mineralerin miktarlarını tayin edildi.

3.4. Boğa Denemesi

Boğa denemesi, etrafında dişi materyal bulunmayan, kısmı şekilde zaptı rapt altında bulunan boğalar kullanılarak analizlere başlamadan ve analiz sonrasında elde edilen ekstraktlar için ayrı ayrı yapıldı. Boğa denemesinde, örnekler 30 ml distile su ile sulandırılırıp vücut sıcaklığına kadar ısıtılacak rastgele bir şekilde üç ayrı boğanın önüne geniş bir kab içersinde sunuldu. Boğaların koklama, yalama, çeneyi uzatma, flehmen davranışları ve penislerindeki ereksiyon oluşumlarına bakılarak sonuçlar kaydedildi.

3.5. Örneklerin kimyasal analizi
3.5.1. Kimyasal yapılı tayininde kullanılan spektroskopik cihazlar

F.Ü. Fen Edebiyat Fak. Kimya Bölümünde bulunan Seconom 1000 Ultraviyole-Visible spektrometresi ile Pye Unicon Sp 3-100 model Infrared spektrometresi kullanılarak spektrumları alındı.

\(^1\)H-NMR spektrumları, İnönü Üniv. Fen Edebiyat Fak. Kimya Bölümünde bulunan 60 MHz Varian (EM-360) spektrometre ve Atatürk. Üniv. Fen Edebiyat Fak. Kimya Bölümünde bulunan 200 MHz Binner spektrometre kullanılarak alındı.

Ankara, Emniyet Genel Müdürlüğü Polis Kriminoloji laboratuvarında bulunan Gaz/Kütle spektrometrisinde 30 M 0.32 MM ID DB-5 Kapillar Kolon kullanılarak Gaz/Kütle spektrumları alındı ve sonuçlar cihazda otomatik olarak değerlendirildi.

3.5.2. Cervico-vaginal mucus ekstraksiyonu

Organik çözücüler uzaklaştırılduktan sonra arıa kalan tortu yeteri kadar (yaklaşık 30ml) su ile sulandırılarak boğa denemesine tabi tutuldu. Daha sonra boğalardan olumlu reaksiyon alınan örneklerin
Ultraviole-Visible (UV), Infrared (IR), Nükleer Magnetik Rezonans (1H-NMR) ve Gaz/Kütle spektrumları alındı.

3.5.2.1. Kloroform / Metanol ile ekstraksiyon işlemi

Mucustaki organik maddelerin ekstraksiyonu için önce 4 kısımdan kloroform ve 1 kısımdan metanol karışımı kullanıldı. Söz konusu Kloroform + Metanol karışımından 4 kısımdan alınarak cervico-vaginal mucus ile karıştırılarak sonra fazların oluşması için 2 saat ayırma hunisinde bekletildi. Daha sonra meydana gelen fazlar ayırma hunisinden ayrı ayrı alınarak her birisinin çözücüleri döner buharlaştıricıda 350°C'de uzaklaştırıldı. Ekstrakt içerisinde var olduğu düşünülen üçüncü maddelerin spektroskopik analiz sırasında buharlaşıp kaybolacağı düşününceliyle analiz öncesi bu ekstraktlar boğa denemesine tabii tutuldu. Elde edilen ekstraktlar da ayrı ayrı boğa denemesine tabii tutulduktan sonra spektroskopik analizleri için UV, IR, 1H-NMR spektrumları alındı. Sonuçları kaydedildi.

3.5.2.2. Dializ ile ekstraksiyon işlemi

İnce tabaka kromatografisi ile belirlenen çözücü sistemi (kloroform/metanol, 1/1) ile 5 ml cervico-vaginal mucus çözülüp selüloz tüpler koyularak +4 0°C'de 24 saat süreyle 20 ml distile su içerisinde dializ edildi. Dializ süresince her 6 saatte bir distile suyu değiştirildi. Dializ sonrası selüloz tüp içinde kalan kısmın organik çözücüüsü 35 0°C'de döner buharlaştıricıda uzaklaştırılduktan sonra boğa denemesine tabii tutularak spektroskopik analizleri yapıldı. Sonuçları kaydedildi.

3.5.2.3. Kolon Kromatografisi (Slica gel ile dolundurulmuş)

Ekstratları saflaştırırmak amacıyla iince tabaka ve kolon kromotografisi kullanıldı. İnce tabaka kromotografisi ile en uygun
çözücü sisteminin 1/1 oranında kloroform/metanol olduğu bulundu. Kolona adsorbent (emici niteliğe sahip) olarak silica gel, kloroform / metanol (1/1) çözücü sistemi kullanılarak dolduruldu ve ekstrakt kolona enjekte edildi. Sonra da fosfat tamponu kullanılarak elüe edildi. Su trompu ile organik çözücüleri uzaklaştırılduktan sonra kalıntıların spektroskopik analizleri yapılarak boğa denemesine tabii tutuldu ve sonuçları kaydedildi.

3.5.2.4. Dietileter ile Ekstraksyon İşlemi

3.6. İstatistiki Analizler

İstatistiki olarak F değeri ve Varyans analizi Feldmen ve Gagon (33)'un belirttiğini metodlarla, Machintosh bilgisayar Statwiev™ programı ile yapıldı.
4. BULGULAR

Kızgınlığın başına 43, ortasında 41 ve sonunda 20 ineğin cervico-vaginal mucusları renk yönünden incelenerek elde edilen bulgular Tablo 1’de özetlenmiştir.

<table>
<thead>
<tr>
<th>Renk</th>
<th>Kızgınlığın Başı</th>
<th>Kızgınlığın Ortası</th>
<th>Kızgınlığın Sonu</th>
<th>TOPLAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=43</td>
<td>n=41</td>
<td>n=20</td>
<td>n=104</td>
</tr>
<tr>
<td>Saydam ve Rensiz</td>
<td>38 88.37 (%)</td>
<td>31 75.60 (%)</td>
<td>13 65.00 (%)</td>
<td>82 78.84 (%)</td>
</tr>
<tr>
<td>Kirli Rensiz</td>
<td>3 6.97 (%)</td>
<td>--</td>
<td>--</td>
<td>3 2.88 (%)</td>
</tr>
<tr>
<td>Sarımsı</td>
<td>2 4.65 (%)</td>
<td>3 7.31 (%)</td>
<td>3 15.00 (%)</td>
<td>8 7.69 (%)</td>
</tr>
<tr>
<td>Beyaz</td>
<td>--</td>
<td>7 17.07 (%)</td>
<td>--</td>
<td>7 6.73 (%)</td>
</tr>
<tr>
<td>Kırmızımsı</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4 3.84 (%)</td>
</tr>
</tbody>
</table>

Kızgınlığın başına elde edilen 43 örnekten % 88.37' sinin saydam ve renksiz, % 6.97'sinin kirli renksiz ve % 4.65 'inin sarımsı renkte, kızgınlığın ortasında elde edilen 41 örnekten % 75.60'ınin saydam ve renksiz, % 7.31'inin sarımsı ve % 17.07'sinin beyaz renkte ve kızgınlığın sonunda elde edilen 20 örnekten % 65'inin saydam ve renksiz, % 15' inin sarımsı ve % 20'sinin kırmızımsı renkte olduğu belirlenmiştir.

İneklerin kızgınlık döneminin farklı devrelerinde elde edilen toplam 104 örneğin % 78.84 'ünün saydam ve renksiz, % 2.88' inin kirli renksiz, % 7.69'unun sarımsı, % 6.73'unun beyaz ve % 3.84'ünün kırmızımsı renkte olduğunu tesbit edilirken, kızgınlığın başında elde edilen örneklerin hiç birinde beyaz ve kırmızımsı rene, kızgınlığın ortasında elde edilen örneklerden ise kirli renksiz ve kırmızımsı
renge ve kızgınlığın sonunda elde edilenlerde de kirli renksiz ve beyaz renge rastlanmamıştır.

Sığır Cervico-vaginal mucus örnekleri kızgınlığın başında, ortasında ve sonunda toplanarak viscözite, pH gibi özelliklerinden başka içerdiği kuru madde (%), su (%), Kalsiyum (mg/100ml), Sodyum (mEq/l) Potasyum (mEq/l) ve Magnezyum (mg/100ml) miktarları araştırılmış olup elde edilen en az, en çok ve ortalama değerleri Tablo 2 'de özetlenmiştir.

Kızgınlığın başında 43 mucus oranı toplanarak adı geçen özellikler yönünden değerlendirildiğinde, toplanan numunelerde 5 sınıf altında değerlendirilen viscözite 0-3 arasında değişmiş ve ortalama 2.14 ± 0.11, pH 6.90-8.20 arasında ortalama 7.29 ± 0.05, kuru madde miktarı % 0.82-% 2.48 arasında ortalama % 1.54 ± 0.06, su miktarı % 97.52-99.18 arasında ortalama % 98.46 ± 0.06, kalsiyum miktarı 9.4-10.8 mg/100ml arasında ortalama 9.89 ± 0.05 mg/100 ml, sodyum miktarı 11.25-12.80 mEq/l arasında ortalama 11.91 ± 0.06 mEq/l, potasyum miktarı 110-136 mEq/l arasında ortalama 119.62 ± 0.88 mEq/l ve magnezyum miktarı da 3.25-4.21 mg/100 ml arasında ortalama 3.94 ± 0.04 mg/100ml olarak tespit edilmiştir.

Kızgınlığın ortasında 41 mucus oranı toplanmış olup sözü edilen özellikler yönünden incelendiğinde, toplanan numunelerde viscözite 0-4 arasında değişmiş ortalama 2.34 ± 0.15, pH 6.70-9.20 arasında ortalama 7.53 ± 0.10, kuru madde miktarı % 1.02- % 5.02 arasında ortalama % 1.59 ± 0.12, su miktarı % 94.08- % 98.98 arasında ortalama % 98.39±0.13, kalsiyum miktarı 9.3-11 mg/100ml arasında ortalama 9.87 ± 0.06 mg/100ml, sodyum miktarı 10.51-13.00 mEq/l arasında ortalama 12.20 ± 0.09 mEq/l, potasyum
<table>
<thead>
<tr>
<th></th>
<th>Kızınının Başı</th>
<th>Kızınının Ortası</th>
<th>Kızınının Sonu</th>
<th>TOPLAM</th>
<th>F Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=43</td>
<td>n=41</td>
<td>n=20</td>
<td>n=104</td>
<td></td>
</tr>
<tr>
<td>Vizkozite</td>
<td>0.00</td>
<td>3.00</td>
<td>2.14 ± 0.11</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>pH</td>
<td>6.90</td>
<td>8.20</td>
<td>7.29 ± 0.05</td>
<td></td>
<td>6.90</td>
</tr>
<tr>
<td>Kuru Madde (%)</td>
<td>0.82</td>
<td>2.48</td>
<td>1.54 ± 0.06</td>
<td></td>
<td>1.02</td>
</tr>
<tr>
<td>Su Miktari (%)</td>
<td>97.52</td>
<td>99.18</td>
<td>98.46 ± 0.06</td>
<td></td>
<td>94.08</td>
</tr>
<tr>
<td>Ca (mg/100ml)</td>
<td>9.40</td>
<td>10.80</td>
<td>9.89 ± 0.05</td>
<td></td>
<td>9.30</td>
</tr>
<tr>
<td>Na (mEq/l)</td>
<td>11.25</td>
<td>12.80</td>
<td>11.91 ± 0.06</td>
<td></td>
<td>10.51</td>
</tr>
<tr>
<td>K (mEq/l)</td>
<td>110.00</td>
<td>136.00</td>
<td>119.62 ± 0.88</td>
<td></td>
<td>110.00</td>
</tr>
<tr>
<td>Mg (mg/100ml)</td>
<td>3.25</td>
<td>4.21</td>
<td>3.94 ± 0.04</td>
<td></td>
<td>2.60</td>
</tr>
</tbody>
</table>
miktari 110-160 mEq/1 arasında ortalama 117.08 ± 1.32 mEq/1 ve magnezyum miktari da 2.6-4.3 mg/100 ml arasında ortalama 3.96±0.07 mg/100ml olarak tespit edilmiştir.

Kızgınlığın sonunda 20 mucus örneği toplanarak aynı özellikler yönünden incelendiğinde vizkozite 1-4 arasında değişmiş ortalama 2.9±0.18, pH, 6.90-9.20 arasında ortalama 7.84 ± 0.16, kuru madde miktarı % 1.12-% 3.12 arasında ortalama % 1.87±0.13, su miktarı % 96.88-% 98.88 arasında ortalama % 98.13 ± 0.13, Kalsiyum miktari 9.6-12 mg/100ml arasında ortalama 10.79 ± 0.16 mg/100 ml, Sodyum miktarı 11.58-13.10 mEq/1 arasında ortalama 12.38 ± 0.10 mEq/1, Potasyum miktarı 112.60-126.70 mEq/1 arasında ortalama 116.58 ± 0.68 mEq/1 ve magnezyum miktarı da 3.66-4.30 mg/100 ml arasında ortalama 3.97 ± 0.04 mg/100 ml olarak belirlenmiştir.

İneklerin kızgınlık döneminin farklı devrelerinde elde edilen toplam 104 cervico-vaginal mucus örneği belirtilen özellikler yönünden ele alındığında vizkozite 0-4 arasında değişmiş ortalama 2.37 ± 0.09, pH 6.70-9.20 arasında ortalama 7.46 ± 0.06, Kuru madde miktarı % 0.82-% 5.02 arasında ortalama % 1.62 ± 0.06, su miktarı % 94.08-% 99.18 arasında ortalama % 98.37 ± 0.07, Kalsiyum miktarı 9.30-12.00 mg/100ml arasında ortalama 10.06 ± 0.06 mg/100ml, Sodyum miktarı 10.51-13.10 mEq/1 arasında ortalama 12.11 ± 0.05 mEq/1, Potasyum miktarı 110-160 mEq/1 arasında ortalama 118.04 ± 0.66 mEq/1 ve Magnezyum miktarı da 2.60-4.30 mg/100 ml ortalama 3.96±0.03 mg/100 ml olarak bulunmuştur.

Elde edilen bu verilere göre kızgınlığın farklı üç devresinde toplanan örneklerdeki vizkozite, pH, kuru madde (%), su (%), Ca (mg/100ml), Na (mEq/1), K (mEq/1) ve Mg (mg/100ml) miktarları
aralarında istatistiki olarak önemli bir fark (P>0.05) bulunmadığı tespit edilmiştir.

Feromonları saflaştırırken yapılan organik analizlere başlamadan önce kızgınlıkta elde ettigimiz cervico-vaginal mucuslar boğa denemesine tabi tutuldu. Üç yaşlarında üç farklı boğanın, cervico-vaginal mucus örneklerine karşı gösterdikleri davranışlar hem kızgınlığın farklı dönemlerine göre hemde tüm östrus dönemine göre incelemiştir ve Tablo 3'ünde her boğa için ve toplam üç boğa için yüzde değerler olarak belirtilmiştir.

Kızgınlık gösteren ineklerden kızgınlığın başında elde edilen toplam 43 mucus örneği boğa denemesine tabi tutulduğunda 3 boğada koklama, çeneyi uzatma, yalaması, flehmen ve penis ereksiyonu tepkileri sırasıyla ortalama % 93.01, 44.18, 8.52, 77.51, 6.97 olduğu belirlenmiştir.

Kızgınlık gösteren ineklerden kızgınlığın ortasında elde edilen toplam 41 mucus örneği boğa denemesine tabi tutulduğunda 3 boğada koklama, çeneyi uzatma, yalaması, flehmen ve penis ereksiyonu tepkileri sırasıyla ortalama % 92.68, 60.16, 3.24, 57.71, 2.43 olduğu gözlenmiştir.

Kızgınlık gösteren ineklerden kızgınlığın sonunda elde edilen toplam 20 mucus örneği boğa denemesine tabi tutulduğunda 3 boğada koklama, çeneyi uzatma, yalaması, flehmen ve penis ereksiyonu tepkileri sırasıyla ortalama % 85.00, 48.33, 11.66, 70.00, 0.00 olarak tespit edilmiştir.
Tablo 3: Kızgınığın farklı devlerinde elde edilen cervico-vaginal mucuslarının organik analizlere başlamadan önce yapılan boğa denemesinde boğaların gösterdikleri müşvet veya olumlu davranışların yüzde değerleri.

<table>
<thead>
<tr>
<th>Boğa Davranışları (%)</th>
<th>Kızgınığın Başı n=43</th>
<th>Kızgınığın Ortası n=41</th>
<th>Kızgınığın Sonu n=20</th>
<th>TOPLAM n=104</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koklama</td>
<td>95.34 97.67 86.04</td>
<td>95.12 95.12 87.80</td>
<td>80.00 90.00 85.00</td>
<td>92.30 95.19 86.53</td>
</tr>
<tr>
<td>Çeneyi Uzatma</td>
<td>46.51 53.48 32.55</td>
<td>44.18 60.97 70.73</td>
<td>50.00 45.00 50.00</td>
<td>52.88 58.65 51.92</td>
</tr>
<tr>
<td>Yalama</td>
<td>9.30 6.97 9.30</td>
<td>8.52 4.87 2.43</td>
<td>15.00 10.00 10.00</td>
<td>8.65 5.76 6.73</td>
</tr>
<tr>
<td>Flehmenn</td>
<td>81.39 83.72 67.44</td>
<td>77.51 63.41 56.09</td>
<td>70.00 75.00 65.00</td>
<td>72.11 71.11 61.53</td>
</tr>
<tr>
<td>Ereksiyon</td>
<td>9.3 6.97 4.65</td>
<td>6.97 2.43 2.43</td>
<td>0.00 0.00 0.00</td>
<td>4.80 3.80 2.88</td>
</tr>
</tbody>
</table>

33
Sonuç olarak kızgınlık gösteren 104 inekten tüm kızgınlık süresince elde edilen mucus örnekleri boğa denemesine tutulduğunda 3 boğada koklama, çeneyi uzatma, yalama, flehmen ve penis ereksonu tepkileri sırasıyla ortalama % 91.34, 54.48, 7.04, 68.25, 3.82 olarak bulunmuştur.

Kızgınlığın farklı dönemlerine göre cervico-vaginal mucusda feromon niteliğindeki organik maddeleri araştırmak amacıyla Kloroform/Metanol (4/1), Kolon Kromatografisi(Slica gel'le doldurulmuş) ve Dializ ile ekstraksiyon işlemleri sonucunda elde edilen ekstraktlar boğa denemesine tabii tutulduğunda, boğalar koklamanın dışında seksüel belirtilerin hiç birini göstermemiştir, hatta koklama davranışından hemen sonra ilgisini başka yerlere yönelmiştir. Bununla birlikte elde edilen ekstraktların Infrared spektrumlarında 2980-2900 cm⁻¹ bölgesinde bulunması gereken organik maddelerin "-C=H-" gerilme titreşimi'ni gösteren piklerinin bulunmaması da bu ekstraksiyon işlemleri sonucunda elde edilen ekstraktlarda hiç bir organik maddenin bulunmadığını doğrulamaktadır.

Sigir cervico-vaginal mucusunda feromon niteliğindeki organik maddeleri araştırmak amacıyla dietileter organik çözücüüsü ile kızgınliğin başında, ortasında, sonunda toplanan her grup için ayrı ayrı ektraksiyonlar yapıldı. Her grup için elde edilen ekstraktlar analiz öncesinde olduğu gibi yine ayrı ayrı boğa denemesine tabii tutuldu. Denemede kullanılan her üç boğanın da ekstraktlarının bulunduğu kaba doğru yaklaşarak kabi kokladıktan sonra çenesini uzatarak kabi yaladığı, ardından flehmen davranışını meydana getirerek bir kaç saniye bu pozisyonda kaldıktan sonra seksüel olarak tahrik olduğu ve kısmen penisin erekte olmasıyla birlikte
ekstraktların bulunduğu kaba karşı atlama davranış gösterdiği tespit edildi.

Boğaları seksüel olarak etkileyen ekstraktların yine her üç gruba göre ayrı ayrı ¹H-NMR ve gaz-kütle spektrumları alındığında her üç grupta bulunan organik maddelerin birbirinin aynısı olduğu belirledi. Gaz/kütle spektrometrisiyle alınan ekstraktın gaz kromatogram'ına göre ekstraktta 16 adet organik maddenin var olduğu görülü (şekil 1).

Ekstraktın Gaz kromatogramındaki 1 No'lu bileşliğin gaz/kütle spektrumuna göre (şekil 2), kütle sayıları(kütle/yük : m/z) 218(Moleküler ağırlık : M+), 203, 189, 175, 161(temel pik), 145, 128, 105, 91, 77, 57 ve bu bileşliğin karışımındaki bolluğu ise % 0.9 olarak tespit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşinin formülüne göre (şekil 2-A) bu bileşinin Dialkil Substitüe Benzen fonksiyonel grubundan olduğu belirlendi.

Ekstraktın Gaz kromatogramındaki 2 No'lu bileşinin Gaz/Kütle spektrumuna göre (şekil 3), kütle sayıları(m/z) 220 (M+), 205 (temel pik), 177, 160.9, 145, 133, 105.3, 91, 67.1, 57 ve bu bileşinin karışımındaki bolluğu ise % 12.83 olarak tespit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşinin formülüne göre (şekil 3-A) bu bileşinin Tri Sübstitüe Fenol fonksiyonel grubundan olduğu belirlendi.
Şekil 1: Ekstraktın Gaz Kromatogramı
Şekil 2: 1 No'lu bileşinin Gaz/Kütle Spektrumu

\[
\text{CH}_2-(\text{CH}_2)_3-\text{CH}_3
\]

Şekil 2-A: 1 No'lu bileşinin önerilen formülü
Şekil 3 : 2 No'lu bileşliğin Gaz/Kütle Spektrumu

Şekil 3-A : 2 No'lu bileşigin önerilen formülü
Ekstraktın Gaz kromatogramındaki 3 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 4), kütle sayıları (m/z) 234 (M+) 219 (temel pik), 203, 191, 175, 159, 147, 131, 115, 102, 91, 77, 65, 57 ve bu bileşiğin karışımındaki bolluğu ise % 1.08 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşiğin formülüne göre (şekil 4-A) bu bileşiğin Tri Sübstitüe Fenol fonksiyonel grubundan olduğu belirlendi.

Ekstraktın Gaz kromatogramındaki 4 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 5), kütle sayıları (m/z) 223 (M+), 205, 177, 160, 149 (temel pik), 121, 104, 92, 77, 65, 57 ve bu bileşiğin karışımındaki bolluğu ise % 20.40 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşiğin formülüne göre (şekil 5-A) bu bileşiğin Ester fonksiyonel grubundan olduğu belirlendi.

Ekstraktın Gaz kromatogramındaki 5 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 6), kütle sayıları (m/z) 256 (M+), 227, 213, 199, 185, 171, 157, 143, 129, 115, 97, 83, 73, 69, 60 (temel pik), 57, 45 ve bu bileşiğin karışımındaki bolluğu ise % 5.83 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşiğin formülüne göre (şekil 6-A) bu bileşiğin Ester fonksiyonel grubundan olduğu belirlendi.

Ekstraktın Gaz kromatogramındaki 6 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 7), kütle sayıları (m/z) 295 (M+), 282, 264, 222, 209, 189, 180, 166, 152, 139, 123, 111, 96, 83, 69, 55 (temel pik), 45 ve bu bileşiğin karışımındaki bolluğu ise % 6.45 olarak tesbit edilmesine rağmen elimizdeki bilgiler bu bileşiğin yapısı hakkında bir formül önerememiz için yetersiz kalmıştır.
Şekil 4 : 3 No'lu bileşigin Gaz/Kütle Spektrumu

Şekil 4-A : 3 No'lu bileşigin önerilen formülü
Şekil 5 : 4 No'lu bileşinin Gaz/Kütle Spektrumu

Şekil 5-A : 4 No'lu bileşinin önerilen formülü
Şekil 6 : 5 No'lu bileşinin Gaz/Kütle Spektrumu

\[\text{CH}_3\text{-(CH}_2\text{)}_{14}\text{-CH}_2\text{-CO-CH-CH}_3 \]

Şekil 6-A : 5 No'lu bileşinin önerilen formülü
Şekil 7: 6 No'lu bileşinin Gaz/Kütle Spektrumu
Ekstraktın Gaz kromatogramındaki 7 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 8), kütle sayıları (m/z) 284 (M+), 241, 205, 185, 171, 157, 143, 129, 111, 97, 83, 73, 69, 60 (temel pik), 57, 55, 45 ve bu bileşiğin karışımındaki bolluğu ise % 5.46 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşik formülüne göre (şekil 8-A) bu bileşiğin Ester fonksiyonel grubundan olduğu belirlendi.

Ekstraktın Gaz kromatogramındaki 8 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 9), kütle sayıları (m/z) 292 (M+), 253, 239, 226, 211, 196, 184, 163, 141, 127, 113, 99, 85, 71, 57 (temel pik), 47 ve bu bileşiğin karışımındaki bolluğu ise % 1.57 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşik formülüne göre (şekil 9-A) bu bileşiğin Alken fonksiyonel grubundan olduğu belirlendi.

Ekstraktın Gaz kromatogramındaki 9 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 10), kütle sayıları (m/z) 433 (M+) 424, 391, 351, 343, 323, 302, 295, 275, 262, 233, 209, 181, 175, 166, 156, 145, 129, 119, 113, 107, 91, 77, 67, 53 ve bu bileşiğin karışımındaki bolluğu ise % 1.00 olarak tesbit edilmesine rağmen elimizdeki bilgiler bu bileşiğin yapısı hakkında bir formül önerelimemiz için yetersiz kalmıştır.

Ekstraktın Gaz kromatogramındaki 10 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 11), kütle sayıları (m/z) 294 (M+), 279, 250, 233, 149 (temel pik), 123, 97, 77, 69, 55 ve bu bileşiğin karışımındaki bolluğu ise % 16.50 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşik formülüne göre (şekil 11-A) bu bileşiğin Alken fonksiyonel grubundan olduğu belirlendi.
Şekil 8 : 7 No'lu bileşinin Gaz/Kütle Spektrumu

\[
\text{CH}_3\text{-(CH}_2\text{)}_{16}\text{C-OCCH}_2\text{OH} \quad \text{OH} \quad \text{OH}
\]

Şekil 8-A : 7 No'lu bileşinin önerilen formülü
Şekil 9 : 8 No'lu bileşinin Gaz/Kütle Spektrumu

\[
\text{CH}_3 \text{CH} - \text{CH}_2 \text{CH}_2 \text{CH}_2 \text{CH} - \text{CH}_2 \text{CH}_2 \text{CH}_2 \text{CH}_2 \text{CH}_2 \text{CH} \text{CH}_2 \text{CH}_2\text{CH}_2 - \text{CH}_2 \\
\text{CH}_3 \quad \text{CH}_3 \quad \text{CH}_3 \quad \text{CH}_3
\]

Şekil 9-A : 8 No'lu bileşinin önerilen formülü
Şekil 10 : 9 No’lu bileşinin Gaz/Kütle Spektrumu
Şekil 11: 10 No'lu bileşinin Gaz/Kütle Spektrumu

Şekil 11-A: 10 No'lu bileşinin önerilen formülü
Ekstraktın Gaz kromatogramındaki 11 No’lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 12), kütle sayıları (m/z) 295 (M+), 285, 267, 251, 238, 225, 211, 197, 183, 169, 155, 141, 133, 127, 113, 99, 85, 71, 57 (temel pik) ve bu bileşliğin karışımındaki bolluğu ise % 2.00 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşik formülüne göre (şekil 12-A) bu bileşliğin Alken fonksiyonel grubundan olduğu belirlendi.

Ekstraktın Gaz kromatogramındaki 12 No’lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 13), kütle sayıları (m/z) 239 (M+), 225, 211, 197, 183, 169, 155, 141, 127, 113, 99, 85, 71, 57 (temel pik), 55 ve bu bileşiğin karışımındaki bolluğu ise % 2.06 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak önerilen bileşik formülüne (şekil 13-A) göre bu bileşiğin Alken fonksiyonel grubundan olduğu belirlendi.

Ekstraktın Gaz kromatogramındaki 13 No’lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 14), kütle sayıları (m/z) 279 (M+), 261, 167, 149 (temel pik), 132, 122, 104, 92, 77, 57 ve bu bileşiğin karışımındaki bolluğu ise % 10.60 olarak tesbit edilmesine rağmen elimizdeki bilgiler bu bileşiğin yapısı hakkında bir formül önerilememiz için yetersiz kalmaktadır. Ancak bu bileşiğin temel pikinininde 149 olması, 4 ve 10 No’lu bileşiklerin izomeri olduğunu göstermektedir.

Ekstraktın Gaz kromatogramındaki 14 No’lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 15), kütle sayıları (m/z) 219 (temel pik), 203, 189, 176, 161, 145, 129, 119, 99, 91, 81, 69, 57 ve bu bileşiğin karışımındaki bolluğu ise % 7.60 olarak tesbit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler
kullanılarak önerilen bileşik formülüne göre (şekil 15-A) bu bileşinin Ester fonksiyonel grubundan olduğu belirlendi.

Şekil 12 : 11 No’lu bileşinin Gaz/Kütle Spektrumu

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_3 \\
\text{\(\text{CH}_3\)} & \quad \text{\((\text{CH}_2)_6\text{CH}_3\)} \\
\end{align*}
\]

Şekil 12-A : 11 No’lu bileşinin önerilen formülü
Şekil 13 : 12 No'lu bileşinin Gaz/Kütle Spektrumu

\[\text{CH}_3 \quad \text{CH}_3 \quad \text{C} \quad (\text{CH}_2)_2 \quad \text{CH}_3 \quad \text{CH}_3 \]

Şekil 13-A : 12 No'lu bileşinin önerilen formülü
Şekil 14 : 13 No'lu bileşinin Gaz/Kütle Spektrumu
Şekil 15 : 14 No'lu bileşinin Gaz/Kütle Spektrumu

Şekil 15-A : 14 No'lu bileşinin önerilen formülü
Ekstraktin Gaz kromatogramındaki 15 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 16), kütle sayıları (m/z) 167 (M+), 149 (temel pik), 117, 104, 92, 77, 67, 57 ve bu bileşiğin karışımındaki bolluğu ise % 5.06 olarak tesbit edilmesine rağmen elimizdeki bilgiler bu bileşiğin yapısı hakkında bir formül önerilememiz için yetersiz kalmaktadır. Ancak bu bileşiğin temel pikinin 149 olması, 4 ve 10 No'lu bileşiğin izomeri olduğunu göstermektedir.

Ekstraktin Gaz kromatogramındaki 16 No'lu bileşiğin Gaz/Kütle spektrumuna göre (şekil 17), kütle sayıları (m/z) 446 (M+), 438, 386, (temel pik), 368, 329, 308, 301, 275, 260, 246, 213, 178, 159, 150, 129, 119, 105, 92, 77, 57, 50 ve bu bileşiğin karışımındaki bolluğu ise % 1.83 olarak tespit edildi. Elde edilen bu veriler ve Gaz/Kütle spektrometrisinin belleğindeki bilgiler kullanılarak bu bileşiğin Steroid fonksiyonel grubundan olduğunun belirlenmesine rağmen bir formül önerilememektediyiz.

Boğa denemeleri sonucu olumlu reaksiyon ile sonuçlanan dietileter ekstraktinin 1H-NMR spektrumu (Şekil 18) alındığında Gaz/Kütle spektrumunu desteklediği görülmüştür. Bu spektrumuma göre de, formül yapısı önerilememeyen bileşikler haricindeki diğer bütün bileşiklerin yapılarında bulunan metil protonlarına (–CH$_3$) ait pikler yaklaşık 0.9 ppm 'de gözlenmektedir.

Ekstraktin 1H-NMR spektrumundaki 1.3-2.4 ppm aralığında gözlenen pikler ise bileşiklerin yapısında bulunan (–CH$_2$) ve (–CH-) protonlarına ait piklerdir.

4, 5, 7, 10 ve 14 No'lu bileşiklerin (R$_1$–C–O–CH$_2$–R$_2$) yapısında bulunan metilen protonları (–CH$_2$) 4.3 ppm 'de tesbit edilmiştir.
Şekil 16: 15 No'lu bileşigin Gaz/Kütle Spektrumu
Şekil 17: 16 No'lu bileşinin Gaz/Kütle Spektrumu
Şekil 18: Ekstraktın 1H-NMR Spektrumu
7 No'lu bileşliğin yapısında bulunan karbon atomundaki proton piki 3.7 ppm'de görülmektedir.

2, 3, 7 No'lu bileşiklerde bulunan hidroksil (-OH) protonlarına ait pik 4.8 ppm'de gözlenmektedir.

4, 10 ve 14 No'lu bileşiklerin yapısında bulunan grubuna bağlı benzen halkasındaki proton pikleri 7.6 - 7.7 ppm'de gözlenmiş olup bu da benzen halkasındaki protonlar etrafında elektron yoğunluğunu azaltan grupların varlığına işaret etmektedir.
5. TARTIŞMA ve SONUÇ

Yapılan bu çalışmada, kızgınlık dönemi boyunca elde edilen cervico-vaginal mucus örneklerinin % 78.84'ünün saydam ve renksiz, % 2.88'inin kirli renksiz, % 7.69'unun sarımsı, % 6.73'ün beyaz ve % 3.84'ünün kırmızımsı renkte olduğu belirlenmiştir. Renk yönünden bulunan bu sonuçlara göre cervico-vaginal mucus örneklerinde saydam ve renksiz, kirli renksiz, sarımsı, beyaz ve kırmızımsı renklere kızgınlık gösteren ineklerde rastlanmıştır. Mucus örneklerinin büyük çoğunluğunun saydam ve renksiz olması istenilen bir özellik olup elde edilen bütün örneklerin bu renkte olması istenmektedir. Ancak kirli renksiz, sarımsı, beyaz ve kırmızımsı renkteki mucus örnekleri de görülmüştür. Bunun sebebi bu örneklerin elde edildiği hayvanlarda latent bir metritis, vaginitis ve cervicitis gibi yangılı bir durum sonucu oluşan irin veya kanın cervico-vaginal mucusa karışmasından ileri gelebileceği gibi proöstrus ve östrus dönemlerindeki aşırı östrojenik etkiden dolayı vasküler sistemde diapedesiz sonucu açığa çıkan kanın mucusa karışmasından dolayı olabileceği de düşünülmektedir.

Renk yönünden bulunan bu sonuçlar Hamana ve ark.(40)'ın, Asotra ve ark. (7)'ın ve Paleologou (68)'ın bildirdikleriyle parellellik arz etmektedir.

Yapılan bu çalışmada, kızgınlık döneminin farklı devrelerinde elde edilen 104 cervico-vaginal mucus örneğinin vizkoziteleri 0-4 arasında değişmiş ve ortalama 2.37 ± 0.09 olmuştur. İneklerin kızgınlık döneminin farklı devrelerinde elde edilen cervico-vaginal mucus örneklerinde tespit edilen bu vizkozite değerlerinin istatistik açıdan önemli bir fark teşkil etmemesine rağmen bireysel olarak
farklılık göstermesi, hayvanın ırkına bakım ve beslenmesine bağlı olabileceği gibi kızgınlık başlangıcında sulu ve kivamlı iken sonuna doğru daha yoğun hal alması, kızgınlık esnasında organizmaya hakim olan östrojen hormon seviyesinin artıp azalmasından kaynaklanabilir.

Bu çalışmada elde edilen vizkozite değerleri Hamana ve ark. (40) ile Paleologou (68)'ın bildirdiği değerlerle benzerlik göstermektedir.

Yapılan çalışmada, ineklerin kızgınlık döneminin farklı devrelerinde elde edilen cervico-vaginal mucus örneklerinin pH değerlerinin 6.70-9.20 arasında değiştiği ve ortalama 7.46 ± 0.06 olduğu ve kızgınlığın farklı devrelerine göre belirlenen pH'ların arasında istatistiki açıdan önemli bir fark bulunmadığı tespit edilmiştir. İneklerin kızgınlık döneminin farklı devrelerinde elde edilen cervico-vaginal mucus örneklerinde tespit edilen pH değerleri, kızgınlığın farklı dönemlerine göre istatistiki açıdan önemli bir fark teşkil etmemesine rağmen, tesbit edilen pH değerlerinin alt ve üst sınırlarları arasındaki bu genişlik, kızgınlık başlangıcından itibaren östrojen hormonu seviyesinin artmasına, buna bağlı olarak mucusun hacminin kivamının, vizkozitesinin değişmişine, ve latent bir enfeksiyon durumunda irinin mucusa karışmasına bağlı olabilir.

Yapılan bu çalışmada tespit edilen pH değerleri, Hamana ve ark. (40)'ın 7.0-9.2, Olds ve VanDemark (66)'ın ve Scott Blair ve ark. (73)'ın 7.6-8.1 olarak bildirdikleri pH değerlerine benzer; Olds ve VanDemark (65)'in ortalama 7.8 ve Arya ve Jain (6)'ın 1.grupta ortalama 8.12 ± 0.106 ve 2. grupta ortalama 7.91 ± 0.118 olan pH değerlerinden düşük; Klemm ve ark. (55)'ın 6.5-6.7 ve Paleologou (68)'ın ortalama 6.7 olarak bildirdikleri pH değerlerinden yüksek bulunmuştur.
Bu çalışmada, pH değerlerinin diğer araştırmacıların bildirdiklerinden düşük veya yüksek bulunması, mucusun elde edildiği kızgınlık döneme, hayvanın ırkına, bakım ve beslenmesine, enfeksiyona bağlı bir durumdan dolayı irinin mucusa karışmasına, pH'in ölçüm tekniğine bağlı olabilir.

İneklerin kızgınlık döneminin farklı devrelerinde elde edilen cervico-vaginal mucus örnekleri kuru madde miktarlarının % 0.82-5.02 arasında değiştiği ve ortalama % 1.62 ± 0.06 olduğu ve kızgınlığın başlangıcından itibaren giderek arttığı, kızgınlığın başlangıcında ortalama % 1.54 ± 0.063, ortasında ortalama %1.59 ±0.12 ve sonunda ortalama % 1.87± 0.13 olduğu tespit edilmiştir. İneklerin kızgınlık döneminin farklı devrelerinde elde edilen cervico-vaginal mucus örneklerinde tespit edilen bu kuru madde miktarlarının kızgınlığın sonuna doğru giderek artması kızgınlığın başlangıcından itibaren östrojen hormonunun tedricen artmasına bağlı olarak salgı miktarının artması ve giderek sulu kivamdan koyu kivama dönüşmemesi, hayvanın beslenmesine bağlı olabilir.

Bu çalışmada tespit edilen kuru madde miktarları, Asotra ve ark.(7)'nin belirttiği % 1-2.5, Hamana ve ark. (40)'nin bildirdiği % 1-2, Boyland ve ark. (20)'nin bulduğu % 1-1.5 değerlerinden daha fazla, ScottBlair ve ark.(73) ile Olds ve VanDemark (66)'ın belirttiği ortalama % 1.2, Paleologou (68)' nun belirttiği ortalama % 1.4 ve Arya ve Jain (6)'in 1. grupta belirttiği ortalama % 1.47±0.076 değerindeki kuru madde miktarlarından yüksek ve 2. grupta belirttiği ortalama % 1.88 ±0.096 oranındaki kuru madde miktarından düşük bulunmuştur.

Bu çalışmada elde edilen kuru madde miktarlarının diğer araştırmacıların bildirdiklerinden düşük veya yüksek bulunması,
mucusun elde edildiği kızgınlık dönemi, hayvanın bakım ve beslenmesi, yangılı bir durumdan dolayı irin veya kanın mucusa karışması, cervico-vaginal mucusun toplanma şekli, kuru madde miktarı ölçüm tekniği gibi nedenlerden ileri gelebilir.

Bu çalışmada ineklerin kızgınlık döneminin farklı devrelerinde elde edilen cervico-vaginal mucus örneklerindeki su miktarlarının % 94.08-99.18 arasında değiştiği ve ortalama % 98.37 ± 0.07 olduğu tespit edilmiştir. İneklerin kızgınlık döneminin farklı devrelerinde elde edilen cervico-vaginal mucus örneklerinde tespit edilen su miktarlarının, kızgınlığın farklı dönemlerine göre istatistik açıdan önemli bir fark teşkil etmemesine rağmen, tesbit edilen alt ve üst sınırları arasındaki bu farkın kızgınlığın başlangıcından itibaren kızgınlık ilerledikçe östrojen hormonu seviyesinin artmasına bağlı olarak salgılanmanın artışı ve kızgınlığın başlangıcında sulu kivamlı iken sonuna doğru yoğun hal alması, hayvanın bakım ve beslenmesi mucustaki su miktarının değişmesine neden olabilir.

Hamana ve ark. (40)'nin kızgınlık süresince elde ettiği cervico-vaginal mucuslarda belirlediği % 98-99 su miktarı ile yine Paleologou (68)' nun aynı dönemde elde ettiği cervico-vaginal mucuslardaki ortalama % 98.6 oranındaki su miktarı bulgularımızla benzer bulunmuştur.

İneklerin kızgınlık döneminin farklı devrelerinde elde edilen cervico-vaginal mucus örneklerinde bulunan mineral maddelerden Ca miktarının ortalama 10.06 ± 0.06 mg/100ml, Na miktarının ortalama 12.11 ±0.05 mEq/l, K miktarının ortalama 118.04 ± 0.66 mEq/l, ve Mg miktarının da ortalama 3.96 ± 0.03 mg/100ml olduğu tespit edilmiştir.
Bu çalışmada tespit edilen Na miktarı, Paleologou (68)'ın bildirdiği 12.17 mEq/l'lik Na miktarına yakın bulunurken, Ca miktarı 0.26 mg/100 ml ve K miktarı da 3.04 mEq/l kadar Paleologou (68)'ın bildirdiğinden daha fazla, halbuki Mg miktarı yine aynı araştıricinin bildirdiği Mg miktarından 0.24 mg/100 ml daha az bulunmaktadır. Bu araştırmada bulunan mineral madde miktarları ile Paleologou (68)'ın bildirdikleri arasındaki çok fark, hayvanların farklı beslenmeleri özellikle farklı vejatasyondan yararlanmaları, mineral madde miktarlarının tayin edilmesi metodu, hayvanın yaş ve süt verimi gibi faktörlerden kaynaklanabilir.

Kızgınlığın başında elde edilen 43, ortasında elde edilen 41 ve sonunda elde edilen 20 cervico-vaginal mucus örneği boğa denemesine tabi tutulduğunda koklama, çeneyi uzatma, yalama, flehmen ve penis ereksiyonu tepkileri kızgınliğin başında toplanan örnekler için sırasıyla ortalama % 93.01, 44.18, 8.52, 77.51 ve 6.97; ortasındaki örnekler için sırasıyla ortalama % 92.68, 60.16, 3.24, 57.71 ve 2.43; ve sonundaki örnek için ise % 85.00, 48.33, 11.66, 70.00 ve 0.00 olarak gözlenirken, tüm kızgınlik süresince bu davranışlar yine sırasıyla ortalama % 91.34, 54.48, 7.04, 68.25 ve 3.82 olarak tespit edilmiştir. Kızgınlığın farklı devrelerine göre yüzde olarak belirlenen bu değerlerin her seksüel davranışa ve kızgınliğin farklı dönemlerine göre değişik olması, boğa denemesinde kullanılan boğaların seksüel olarak tecrübe edilmiş olanlardan, temelde birbirlerine benzer olաsa da hormonal durumlarının farklı seviyelerde seyretilmesinden, bu tür tepkiler doğuran feromonların kızgınlık süresince bulunmasına rağmen kızgınlığın farklı devrelerine göre farklı seviyelerde bulunmasından ve boğaların bu örneklerle muhatap edildiği andaki halinden, sağlık durumunun ve çevre şartları gibi nedenlerden ileri
gelebilir. Şimdiye kadar yapılan çalışmaların hiç birisinde bu çalışmada bildirildiği gibi seksüel davranışların rakamlarla bildirilmemesinden dolayı tartışma imkanı bulunamamıştır.

Adams (1), Estes (32), French ve ark.(35), Hawk ve Conley (41), Izard ve Vandenberg (48), Izard (49), Jacobs ve ark.(50), Kiddy ve Mitchell (53), Klemm ve ark. (55), Nishumura ve ark.(64), Paleologou (66) ve Rivard ve Klemm (69)'in bildirdikleri gibi cervico-vaginal mucusun boğaları seksüel olarak uyaran feromonları ihtiva ettiği görüşü bu çalışmadaği bulguları doğrulamaktadır.

Kızgınlığın farklı dönemlerinde feromonları ihtiva ettiği tesbit edilen cervico-vaginal mucuslarda feromon niteliğindeki organik maddeleri tesbit etmek amacıyla kullanılan ekstraksiyon yöntemleri arasında kloroform/metanol (4/1) çözücü sistemi, kolon kromatografisi ve dializ sonucu elde edilen ekstraktılarda organik maddde bulunmaması ve boğa denemelerinde boğaların seksüel olarak etkilenmemesinin nedenleri arasında, kızgınlığın sonundaki bazı örneklerin muhtemelen östrus bitiminden sonra toplanmış olması, üremeyle ilgili mesajların (işaret feromonlarının) östrus başlamadan önce üretilmiş olması, ayrıca cervico-vaginal mucusun toplanma yöntemi, laboratuvara taşınması, analizlerin yapılması ve ekstraksiyon işlemi yapılrken organik çözücü olarak kullanılan kloroform ve metonol'un buharlaştırılarak uzaklaştırılması ve boğa denemelerinde örneklerin ısıtılması esnasında zaten çok uçucu olan feromonların kaybolması gibi faktörlerden kaynaklandığı düşünülmektedir.

Dietileter ile yapılan ekstraksiyon işlemi sonucu elde edilen ekstraktılarda ise, feromon niteliğindeki maddelerin varlığı tespit edilmiştir. Çünkü organik çözücü olarak kullandığımız dietileter düşük
isida buharlaşmaktadır. Bu ekstraksiyon sonucu boğaları seksüel olarak uyaran ekstraktılarda toplam 16 adet organik madde tesbit edilmiştir. Bu tesbit edilenlerden 11 tanesinin kimsasal yapısı belirlenirken kimsasal yapısı belirlenemeyen 2 organik maddenin de 4 ve 10 No'lu bileşliğin izomeri olduğu tesbit edilmiştir. Üç tanesinin kimsasal yapısı ise belirlenemememiştir. Ancak kimsasal yapısı belirlenemeyenlerden 1 tanesinin gaz/kütle spektrometrisinin bellegindeki bilgilerle ve elde edilen bulgulara göre steroid fonksiyonel grubundan olduğu tesbit edilmiştir.

Şimdiye kadar yapılan araştırmaların hiçbirinde, bu araştırma ile cervico-vaginal mucusa tespit edilen ve kimsasal yapısı belirlenen söz konusu bileşiklerin varlığından bahsedilmemiştir. Klemm ve ark.(55)'nin feromon olarak bildirdikleri bileşiklerin bu çalışmalar dakiilerden farklı olması ve onların tespit ettikleri bileşiklere bu çalışmada rastlanmaması, çalışmalarında kullanılan techizat ve laboratuvar tekniklerinin farklı olmasıyla birlikte, bazı örneklerin muhtemelen östrus bitiminden sonra toplanmış olması, üreymeyle ilgili mesajların (işaret feromonlarının) östrustan önce veya östrusun erken safhalarında görülmuş olması, ayrıca cervico-vaginal mucusun toplanma metodu, laboratuvara taşınması, saklanması, analizlerin farklı yöntemlerle yapılması ve ekstraktan organik çözücü olarak kullanılan kloroform ve metenol'un buharlaştırılarak uzaklaştırılması ve boa denemelerinde örneklerin ısıtılmasına üçucu nitelikte olan feromonların kaybolması gibi nedenlerden ileri gelebileceği düşünülmektedir.

Sonuç olarak:
1- Kızgınlığın farklı devrelerinde toplanan cervico-vaginal mucus örnekleri birbirleriyle karşılaştırıldığında aralarında herhangi bir fark bulunmamıştır.

2- Cervico-vaginal mucuslardaki feromonlar, kloroform/metanol ile ekstraksiyon, Dializ ile ekstraksiyon ve Kolon kromatografisi (Slica gel ile doldurulmuş) işlemlerleri ile ekstrakte edilemediyip, ancak Dietil eter ile ekstrakte edilebiliyor, ancak Dietil eter ile ekstrakte edilebilimiştir.

3- Kızgınlığın habercisi olan feromonların, boğa denemesi ve ekstraksiyon işlemi sonuçlarına göre cervico-vaginal mucusta varlığı tespit edilmişdir.

4- Dietileter ekstraksiyonu ile cervico-vaginal mucuslarda feromon niteliğinde 16 organik madde tayin edilmiş ve bu maddelerin dialkil substitüe benzen, tri substitüe fenol, alken, ester ve steroid fonksiyonel gruplarından olduğutespit edilmiştir.

5- Cervico-vaginal mucus örneklerinden analiz edilen feromon niteliğindeki maddelerin ancak boğa denemeleri sonucu boğaların seksüel davranışlarına göre feromon olarak değerlendirilebileceği kanaatine varılmıştır.

Bu bilgiler ışığı altında, feromonların laboratuvar tetkikleri yoluya izolasyonu sonucu belirlenmesi için gelecekte yapılacak çalışmalarında, ineklerdeki seksüel feromonların doğal alicısı olan boğaların seksüel davranışlarından koklama, yalama, flehmen, penis ereksiyonu ve atlama davranışlarının en güvenilir biyolojik yol olarak kullanılması, organik çözücü alarak düşük ısıda buharlaşan organik çözücülerin kullanılması ve analizi yapılacak biyolojik materyalin soğuk zincirine dikkat edilmesi, bundan sonra bu konuda çalışacaklara yol gösterecek ve ışık tutacaktır.
6. ÖZET

Bu çalışma, kızgınlık gösteren ineklerde, kızgınlığın farklı devrelerinde elde edilen vagina ve cervix akıntılarında kızgınlığın erkeğe habercisi olan feromonların varlığını ve kimyasal yapısını araştırmak amacıyla planlanmıştır. Ayrıca feromonların varlığını ve kimyasal yapısını etkileyebileceği düşüncesiyile cervico-vaginal mucusun fiziksel ve kimyasal özellikleri de incelenmiştir.

Östrusta bulunan 197 ineğin 104'ünden östrusun başında, ortasında ve sonunda rectal masaj yoluya cervico-vaginal mucus örnekleri toplandı. Bu örnekler boğa denemesine tabii tutulduktan sonra renk, pH, vizkozite, Su-kuru madde, Ca, Na, Mg ve K miktarları tayin edildi. Daha sonra kimyasal analizlere başlayıcaya kadar -15 ile -20°C arasında muhafaza edildi.

Cervico-vaginal mucusun Kloroform/Metanol, Dializ, Kolon Kromatografisi (Slica gel'ledoldurulmuş) ve Dietileter ile ekstraksiyon işlemlerini yapıldı. Boğa denemesi sonucu müspet reaksiyon alınan ekstratların kimyasal yapısını tayin etmek için Ultraviyole-Visible, Infrared, ¹H-Nükleer Magnetik Rezonans ve Gaz/Kütle spektroskopisi kullanılarak spektrumları alındı.

İneklerin kızgınlık döneminin farklı devrelerinde elde edilen 104 örneğin % 78.84 'ünün saydam ve renksiz, % 2.88' inin kirli renksiz, % 7.69'unun sarımsı, % 6.73'unun beyaz ve % 3.84 'ünün kırmızımsı renkte olduğu tesbit edildi.

İneklerin kızgınlık döneminin farklı devrelerinde elde edilen toplam 104 cervico-vaginal mucus örneğinde vizkozite 0-4 arasında ortalama 2.37 ± 0.09, pH 6.70-9.20 arasında ortalama 7.46 ± 0.06, Kuru madde miktari % 0.82-% 5.02 arasında ortalama % 1.62 ± 0.06, su miktari % 94.08-% 99.18 arasında ortalama % 98.37 ± 0.07, Kalsiyum...
miktarı 9.3-12 mg/100ml arasında ortalama 10.06 ± 0.06 mg/100ml, Sodyum miktarı 10.51-13.1 mEq/1 arasında ortalama 12.11 ± 0.05 mEq/1, Potasyum miktarı 110-160 mEq/1 arasında ortalama 118.04 ± 0.66 mEq/1 ve Magnezyum miktarı da 2.6-4.3 mg/100 ml arasında ortalama 3.96±0.03 mg/100 ml olarak bulunmuştur.

Kızgınlığın farklı devrelerinde toplanan mucusların fiziksel özellikleri ve kimyasal maddeleri arasındaki fark istatistiki olarak uygulanan varyans analizi metodu sonucu önemsiz (P> 0.05) bulunmuştur.

Kızgınlık gösteren 104 inekten kızgınlık süresince elde edilen mucus örnekleri 3 boğa ile denemeye tabii tutulduğunda koklama, çeneyi uzatma, yalama, flehmen ve penis ereksiyonu tepkileri sırasıyla ortalama % 91.34, 54.48, 7.04, 68.25, 3.82 olarak bulunmuştur.

Kızgınlığın üç farklı döneminde elde edilen cervico-vaginal mucus örneklerinin Kloroform/Metanol, Kolon Kromatografisi(Slica gel ile doldurulmuş) ve dializ ile ekstraksiyon işlemleri sonucunda elde edilen ekstraktlarının boğa denemesi neticesinde menfi sonuç verdiği gibi spektroskopik analizlerde de herhangi bir organik madde bulunamamıştır. Örneklerin Dietileter ile ekstraksiyon işlemi sonucunda elde edilen ekstraktların boğa denemesi sonucu müspet netice verdiği gibi ¹H-NMR ve Gaz/kütle spektroskopileri sonucu dialkil substitüe benzen, tri substitüe fenol, ester, alken ve steroid fonksiyonel gruplarından 16 adet organik madde bulunmuştur.

Sığır cervico-vaginal mucusunda feromonların bulunduğu, bunların dietileter gibi düşük isıda buharlaştır çözücülerle ekstrakte edilebileceği ve feromonların tayininde boğa denemesinin en güvenilir yol olduğu sonucuna varılmıştır.
7. SUMMARY

The aim of this study was to determine the presence and biochemical structure of pheromones that are believed to function as a signal of estrus for male animals. Furthermore, the physical and chemical properties of cervico-vaginal secretions may influence the pheromones so the physical and chemical properties of these secretions were also studied.

Cervico-vaginal mucus samples from 104 oestrus cows out of197 were collected by rectal massage between early heat, mid heat and late heat of estrus. After these samples were bioassayed by bulls, they were analysed for colour, pH, viscosity, water-dry matter contents, Ca, Na, Mg and K levels. Afterwards, the remaining samples were stored at between -15 to -200°C until analysed.

Cholofom/methanol, diethyl ether extractions, dialysis, columnn chromatography (filled with silica gel) of cervico-vaginal mucus were also performed. To determine the chemical structure of the extracts from the positive samples spectrums were determined using Ultraviolet-visible, Infrared, ¹H-Nuclear Magnetic Resonans and Gas-Mass spectrometers.

In 104 cervico-vaginal mucus samples obtained from different period of estrous cows, 78.84 % was transparent colourless, 2.88 % dirty colourless, 7.69 % yellowish, 6.73 % white and 3.84 % reddish.

In 104 of samples obtained different period of estrous cows, the viscosity ranged between 0 and 4 mean 2.37 ± 0.09, pH value was between 6.7 and 9.2 mean 7.46 ± 0.06, amount of dry matter varied between 0.82 % and 5.02 % mean 1.62 % ±0.06, water content ranged between 94.08 % and 99.18 % mean 98.37 % ± 0.07, Ca concentration
ranged between 9.3 and 12 mg/100 ml mean 10.06 ± 0.06 mg/100 ml, Na concentration ranged between 10.51 and 13.1 mEq/l mean 12.11 ± 0.05 mEq/l, K level ranged between 110 and 160 mEq/l mean 118.04 ± mEq/l and Mg amount ranged between 2.6 and 4.3 mg/100 ml mean 3.96 ± 0.03 mg/100ml.

The differences in physical properties and chemical contents of mucus samples collected during various phases of estrus were found to be statistically insignificant (P>0.05).

When 104 mucus samples obtained from different phases of estrus cows, were tested by 3 bulls sniffing, chin resting, licking, flehmen and penile erection reactions were recorded and the mean values for the reactions were found to be 91.34, 54.48, 7.04, 68.25 and 3.82 %, respectively.

The result of bull assay carried out as the extracts obtained from the analysis of colon chromatography, dialysis and chloroform/methanol extractions was negative and also no organic substance was detected by spectroscopic analysis. But, after diethyl ether extraction, the samples still induced bull reaction and following spectroscopy, in these extracts from the functional groups of dialkyl substituted benzene, tri substituted phenol, ester, alkene and steroid, 16 organic substance were found.

The results of these studies indicate that bovine cervico-vaginal mucus secretions during estrus, contain pheromones. Additionally it was noticed that pheromones could be extracted with solents such as diethyl ether which can evaporise at low temperatures (10-15 °C). For testing the presence of pheromones in biological secretions, bull assay still appears to be the most reliable method.
8. KAYNAKLAR

9.ÖZGEÇMİŞ

Arş.Gör.Tanzer Bozkurt
10. TEŞEKKÜR