ANTRENMANLI BİREYLERDE ARTAN EGZERSİZ TESTİ SIRASINDA KARDİYORESPİRATUVAR VE METABOLİK SİSTEMLERİN AEROBİK VE ANAEROBİK EGZERSİZ BÖLGELERİ CEVAPLARININ KARŞILAŞTIRILARAK BELİRLENMESİ

YÜKSEK LİSANS TEZİ

Nida ASLAN
2012
ONAY SAYFASI

Prof. Dr. Emine ÜNSALDI

Sağlık Bilimleri Enstitüsü Müdürü

Bu tez Yüksek lisans tezi standartlarına uygun bulunmuştur.

Doç. Dr. Oğuz ÖZÇELİK

Biyofizik Anabilim Dalı Başkanı

Tez taraflımızdan okunmuş, kapsam ve kalite yönünden Yüksek lisans Tezi olarak kabul edilmiştir.

Doç. Dr. Oğuz ÖZÇELİK

Danışman

Yüksek lisans Sınavı Jüri Üyeleri

Prof. Dr. Süleyman DAŞDAG
Prof. Dr. Haluk KELEŞTİMUR
Doç. Dr. Mete ÖZCAN
Doç. Dr. Oğuz ÖZÇELİK
Yrd. Doç. Dr. İhsan SERHATLIOĞLU
TEŞEKKÜR

Yüksek lisans eğitimin süresince engin akademik deneyim ve bilimsel birikimleriyle her türlü yardım ve desteğini esirgemeyen Biyofizik A.D. Öğretim Üyesi ve danışman hocam Doç. Dr. Oğuz ÖZÇELİK’e,

Akademik yardımlarını esirgemeyen ve her zaman yol gösterici olan Biyofizik A.D. Öğretim Üyesi değerli hocam Doç. Dr. Mete ÖZCAN’a, Fizyoloji A.D. Öğretim Üyeleri Prof. Dr. Haluk KELEŞTİMUR’a, Prof. Dr. Selim KUTLU’ya, Prof. Dr. Ramazan BAL’a, Yrd. Doç. Dr. Mustafa ULAŞ’a, Biyomühendislik Öğretim Üyesi Yrd. Doç. Dr. İhsan SERHATLIOĞLU’na, Yeditepe Üniversitesi Fizyoloji A.D. Öğretim Üyesi Prof. Dr. Bayram YILMAZ’a ve Dicle Üniversitesi Biyofizik A.D. Öğretim Üyesi Prof. Dr. Süleyman DAŞDAĞ’a Biyofizik A.D. yüksek lisans öğrencisi Sinem ORUÇ’a ve değerli aileme,

Bu tezin gerçekleştirilmesi için destek sağlayan Fırat Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine (FÜBAP) en içten teşekkürlerimi sunarım.
İÇİNDEKİLER

BAŞLIK SAYFASI .. i
ONAY SAYFASI .. ii
TEŞEKKÜR ... iii
ŞEKİL LİSTESİ .. vii
TABLO LİSTESİ .. xi
KISALTMALAR LİSTESİ .. xii
1.ÖZET ... 1
2. ABSTRACT ... 3
3.GİRİŞ .. 5
 3.1. Kardiyopulmoner Egzersiz Testinin Kullanıldığı Durumlar............................... 11
 3.2. Egzersiz Tipleri ... 11
 3.2.1. Sabit Yük Testi.. 11
 3.2.2. İş Gücünün Düzenli Olarak Arttığı Egzersiz Testi 13
 3.3. Kardiyopulmoner Egzersiz Testi Sırasında Ventilasyon ve Pulmoner Gaz
Değişim Cevabı .. 17
 3.4. Kardiyopulmoner Egzersiz Testi Değişkenleri, Standart Ölçümler ve
 Fizyolojik Etkileri ... 23
 3.4.1. Anaerobik Eşik ... 23
 3.4.2. Maksimal Aerobik Kapasite .. 30
 3.4.3. Oksijen Pulse .. 33
 3.4.4. Kalp Atım Hızı ... 35
 3.4.5. İş Gücünden Oksijen Alınımı veya Metabolik Eşitlik Tahmini 36
 3.4.6. Pik Solunum Değişim Oranı .. 37

iv
3.5. Elektrokardiyogram... 38

4. GEREÇ VE YÖNTEM... 41

4.1. Deneklerin Fiziksel Özellikleri ... 41
4.2. Deneklerin Egzersiz Testine Hazırlanması 43
4.3. Egzersiz Test Protokolü .. 46
 4.3.1. İş Geciminin Düzenli Olarak Arttığı Egzersiz Testi 46
4.4. Kardiyak, Metabolik ve Respiratuvar Parametrelerin Ölçümü 49
4.5. Anaerobik Eşiğin Hesaplanması .. 50
4.6. Kardiyopulmoner Egzersiz Testi Prosedürleri 53
 4.6.1. Gaz Değişim Sistemlerinin Kalibrasyonu 53
 4.6.2. Yazılım Faktörleri ... 55
 4.6.3. Sistem Bakımı ve Kalite Kontrol 56
4.7. İstatistiksel Analiz... 57

5. BULGULAR.. 58

5.1. Şiddeti Düzenli Olarak Artan Yük Karşı Yapılan Egzersiz Testi Sırasında Oksijen Alımı Cevabı... 61
5.2. Şiddeti Düzenli Olarak Artan Yük Karşı Yapılan Egzersiz Testi Sırasında Karbondioksit Atımı Cevabı ... 67
5.3. Şiddeti Düzenli Olarak Artan Yük Karşı Yapılan Egzersiz Testi Sırasında Tidal Sonu Parsiyel Basınç Cevapları... 71
5.4. Şiddeti Düzenli Olarak Artan Yük Karşı Yapılan Egzersiz Testi Sırasında Kalp Atım Hızının Verdiği Cevaplar ... 72
5.5. Şiddeti Düzenli Olarak Artan Yük Karşı Yapılan Egzersiz Testi Sırasında Solunum Parametreleri... 76
6. TARTIŞMA VE SONUÇ .. 80

7. KAYNAKLAR ... 90

8. ÖZGEÇMİŞ .. 97
ŞEKİL LİSTESİ

Şekil 3.1: Bruce protokolü..6
Şekil 3.2: Naughton protokolü ..6
Şekil 3.3: Balke protokolü..7
Şekil 3.4: Farklı egzersiz test protokolleri ...8
Şekil 3.5: Wasserman’ın çalışma dışlisi modeli ..9
Şekil 3.6: Sabit iş yükü egzersiz test örneği ...12
Şekil 3.7: İş yükünün dakikada basamaklı olarak (üstte) ve rampa şeklinde (altta) arttığı egzersiz testi protokolleri ..14
Şekil 3.8: Normal bireylerde KPET cevabı ..18
Şekil 3.9: Antrenmanlı bireylerde KPET cevabı ..19
Şekil 3.10: Kalp hastası olan bireylerde KPET cevabı ...20
Şekil 3.11: Pulmoner sistem bozukluğu olan bireylerde KPET cevabı ...21
Şekil 3.12: Breath-by-breath methodu ile elde edilen solunum gaz değişim parametreleri ölçümleriyle AE tespiti ..24
Şekil 3.13: Log VO₂’ye karşı log laktat [La’], log pirüvat [Pyr] ve log laktat/pirüvat (L/P) oranı ...25
Şekil 3.14: Antrenmanlı bireylerde, normal bireylerde ve kardiyak hastalığı olan bireylerde artan egzersiz testi esnasında laktat artışını ve bikarbonat azalışını ..26
Şekil 3.15: AE’nin V-slope yöntemi ile tahmini ...28
Şekil 3.16: AE’yi belirlemek için kullanılan yöntemler ..29
Şekil 3.17: Supramaksimal iş gücü testlerinden VO₂ (VO₂max) bulunması31
Şekil 3.18: Sağlıklı, Kalp hastalıkli (K.H) ve kronik obstrüktif solunum yolları hastalıklı (OSH) olan bireyler için VO₂ ile ilgili kalp atım hızında değişim karakteristikleri. ...34

Şekil 3.19: Sağlıklı, Kalp hastalıkli (K.H) ve kronik obstrüktif solunum yolları hastalıklı (OSH) olan bireyler için iş gücü artış ile ilişkili olarak (O₂ pulse) VO₂/kalp atım hızı karakteristik değişiklikleri.34

Şekil 3.20: AE belirlenmesinde kullanılan kalp atım hızı ile iş gücü arasındaki ilişkinin Conconi testi ile bulunması. ...36

Şekil 3.21: Normal bir EKG örneğinin şekli. ...38

Şekil 4.1: Egzersiz testi sırasında EKG elektrot bağlantılarının yerleşim düzeni. 45

Şekil 4.2: Çalışmalarda kullanılan şiddeti düzenli olarak artan yüke karşı yapılan egzersiz test protokolü. ..47

Şekil 4.3: Şiddeti düzenli olarak artan yüke karşı yapılan egzersi testi sırasında örnek bir deneğin Vₑ-iş gücü ilişkisi ile AE tespiti.................................50

Şekil 4.4: Şiddeti düzenli olarak artan yüke karşı yapılan egzersi testi sırasında örnek bir deneğin VCO₂-VO₂ ilişkisi ile AE tespiti...............................51

Şekil 4.5: İş gücüün düzenli olarak arttırıldığı egzersiz testi sırasında örnek bir deneğin AE’sinin hesaplanmasında kullanılan VO₂-VCO₂, Vₑ/VO₂, PₑTₐ₂ ilişkisi ...52

Şekil 5.1: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin ulaştıkları Wₘₐₓ ve AE iş gücü değerleri58

Şekil 5.2: Deneklerin aerobik ve anaerobik egzersiz bölgelerinde Δ iş gücü ortalama (±SS) değerleri...60
Şekil 5.3: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında örnek bir deneğin VO₂-iş gücü ilişkisi61

Şekil 5.4: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin VKİ (kg/m²) ve MET ilişkisinin lineer regresyon analizi ...63

Şekil 5.6: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin aerobik egzersiz bölgesindeki ∆ iş gücü-VO₂ ilişkisinin lineer regresyon analizi...64

Şekil 5.7: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin anaerobik egzersiz bölgesindeki ∆ iş gücü-VO₂ ilişkisinin lineer regresyon analizi...65

Şekil 5.8: Çalışmaya katılan deneklerin aerobik ve anaerobik egzersiz bölgeleri ∆O₂ pulse cevaplarının karşılaştırılmalı olarak gösterimi66

Şekil 5.9: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında örnek bir deneğin VCO₂-iş gücü ilişkisi...67

Şekil 5.10: Çalışmaya katılan deneklerin aerobik ve anaerobik egzersiz bölgelerindeki ∆VCO₂ cevaplarının karşılaştırılmalı olarak gösterimi...69

Şekil 5.11: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin aerobik egzersiz bölgesindeki ∆ iş gücü-VCO₂ ilişkisinin regresyon analizi...70

Şekil 5.12: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin anaerobik egzersiz bölgesindeki ∆ iş gücü-VCO₂ ilişkisinin regresyon analizi...70

Şekil 5.13: Bireylerin istirahatte, ısınmada, AE’de ve Wmax’da PETO₂ ortalama (±SS) değerlerinin gösterimi ...71
Şekil 5.14: Deneklerin istirahatte, ısımada, AE’de ve W_{max}’da P_{ETCO_2} ortalama $(±SS)$ değerlerinin gösterimi. ...72

Şekil 5.15: Şiddet düzenli olarak artan yük ege karşı yapılan egzersiz testi sırasında örnek bir deneğin kalp atım hızlı-ış gücü ilişi. ...73

Şekil 5.16: Deneklerin istirahat, ısım (20 W), AE (156 W) ve W_{max}’daki (233 W) kalp atım hızı ortalama $(±SS)$ değerlerinin gösterimi74

Şekil 5.17: Deneklerin aerobik ve anaerobik egzersiz bölgelerindeki Δ kalp atım hızı ortalama $(±SS)$ değerlerinin karşılaştırmalı olarak gösterimi........74

Şekil 5.18: Deneklerin aerobik egzersiz bölgesindeki Δ kalp atım hızı-ış gücü ilişi nin lineer regresyon analizi ...75

Şekil 5.19: Deneklerin anaerobik egzersiz bölgesindeki Δ kalp atım hızı-ış gücü ilişi nin lineer regresyon analizi ...75

Şekil 5.20: Şiddet düzenli olarak artan yük ege karşı yapılan egzersiz testi sırasında örnek bir deneğin V_E-ış gücü ilişi ...77

Şekil 5.21: Deneklerin istirahat, ısım (20 W), AE (156 W) ve W_{max}’daki (233 W) V_E (L/dk) ortalama $(±SS)$ değerlerinin gösterimi.................................77

Şekil 5.22: Aerobik ve anaerobik egzersiz bölgelerinde deneklerin ΔV_E (L/dk) ortalama $(±SS)$ değerlerinin karşılaştırmalı olarak gösterimi..............78

Şekil 5.23: Deneklerin aerobik egzersiz bölgesindeki ΔV_E-ış gücü ilişi nin lineer regresyon analizi ...79

Şekil 5.24: Deneklerin anaerobik egzersiz bölgesindeki ΔV_E-ış gücü ilişi nin lineer regresyon analizi ...79
TABLO LİSTESİ

Tablo 3.1: KPET’yi Açıklayan Sorular, Hastalık Örneği ve Anormallik Belirtileri

.. 16

Tablo 4.1: Çalışmaya katılan deneklerin fiziksel özellikleri.. 42

Tablo 4.2: Alınan submaksimal bir iş gücü oranında aynı bireyin tekrarlanan

çalışmalarından elde edilen gaz değişim değişkenleri varyasyon

limitleri.. 57

Tablo 5.1: Çalışmaya katılan deneklerin W_{max}, AE ve her kilogram vücut ağırlığı

başına W_{max} ve AE’deki iş üretibilme kapasiteleri ve ortalama (±SS)

degerleri... 59

Tablo 5.2: Artan yüké karşı yapılan egzersiz testi sırasında deneklerin bireysel

istirahat, ısınma, AE, maksimal VO_{2}, VO_{2max}/kg, Δ aerobik VO_{2}, Δ

anaerobik VO_{2} değerleri ve ortalamaları... 62

Tablo 5.3: Artan yüké karşı yapılan egzersiz testi sırasında deneklerin bireysel

istirahat, ısınma, AE, maksimal VCO_{2}, Δ aerobik VCO_{2} ve Δ

anaerobik VCO_{2} değerleri ve ortalamaları... 68

Tablo 5.4: Deneklerin istirahat, ısınma, AE, W_{max} ve beklenen ortalama (±SS)

kalp atım hızı değerleri.. 73

Tablo 5.5: Şiddeti düzenli olarak artan yüké karşı yapılan egzersiz testi sırasında

deneklerin istirahat, ısınma dönemi, AE ve W_{max}’daki dakika solunum

(V_E L/dk) ortalama (±SS) değerleri... 76
<table>
<thead>
<tr>
<th>KISALTMALAR LİSTESİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
</tr>
<tr>
<td>CO₂</td>
</tr>
<tr>
<td>KPET</td>
</tr>
<tr>
<td>LAE</td>
</tr>
<tr>
<td>LE</td>
</tr>
<tr>
<td>MET</td>
</tr>
<tr>
<td>O₂</td>
</tr>
<tr>
<td>PₑT.CO₂</td>
</tr>
<tr>
<td>PₑT.O₂</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>VCO₂</td>
</tr>
<tr>
<td>Vₑ</td>
</tr>
<tr>
<td>VE</td>
</tr>
<tr>
<td>Vₑ/VCO₂</td>
</tr>
<tr>
<td>Vₑ/VO₂</td>
</tr>
<tr>
<td>VKİ</td>
</tr>
<tr>
<td>VO₂</td>
</tr>
<tr>
<td>VO₂max</td>
</tr>
<tr>
<td>W</td>
</tr>
</tbody>
</table>
1. ÖZET

Aerobik fitnesin belirlenmesi klinik tıp bilimlerinde önemli bir konudur. Bu çalışmanın amacı; şiddetli düzenli olarak artan egzersiz testi sırasında, aerobik ve anaerobik bölgedeki cevapların kardiyorespiratuvar ve metabolik sistemlerde karşılaştırılması olarak değerlendirilmesidir.

Maksimal egzersiz kapasitesi, AE’de iş gücü, maksimal oksijen (O₂) alınımı (VO₂max) ve vücut ağırlığı için VO₂max sırasıyla; 232.7±30 W, 156.2±24 W, 2931±317 ml/dk ve 42.8±6.6 ml/kg/dk olarak bulundu. Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında aerobik bölge cevabı; egzersiz kapasitesi ve her kilogram başına VO₂, anaerobik bölgeden anlamlı olarak yüksek bulundu: 136.2±25 W ve 21 ml/dk/kg buna karşılık 76.4±19 W ve 11 ml/dk/kg (p<0.05).
Şiddeti düzenli olarak artan egzersiz testi sırasında kardiyorespiratuvar ve metabolik cevabin belirlenmesi; sistemlerin kapasitesi hakkında önemli bilgiler sağlayabilir. Bununla birlikte şiddetli düzenli olarak artan egzersiz testinin aerobik ve anaerobik bölgelerinin değerlendirilmesi çok daha hassas bilgiler sağlayacaktır. Sonuç olarak, antrenmanlı bireylerden elde edilen veriler; hastalar, sedanter ve yüksek antrenmanlı bireyler ile ilgili gelecek çalışmalar için referans değerleri olacaktır.

Anahtar Kelimeler: Egzersiz Testi, VO₂, Kalp Atım Hızı, Anaerobik Eşik, Aerobik Fitnes.
2. ABSTRACT

COMPARATIVELY DETERMINING EFFECTS OF AEROBIC AND ANAEROBIC EXERCISE REGIONS ON THE CARDIORESPIRATORY AND METABOLIC SYSTEM DURING AN INCREMENTAL EXERCISE TEST IN TRAINED SUBJECTS

Determination of aerobic fitness is one of the important issues in clinical medicine. The purpose of this study was comparatively evaluated the cardiorespiratory and metabolic systems in response to the aerobic and anaerobic regions of incremental exercise test.

After giving a signed informed consent which was approved by the local ethical committee, total of 24 trained male subjects performed an incremental exercise test (15 W/min) until the limit of tolerance using an electromagnetically braked cycle ergometer. Respiratory gas exchange parameters were determined breath-by-breath using gas analyser system. Ventilator parameters were evaluated using turbin volume transducer. Twelve lead ECG was used to evaluate cardiac response. Anaerobic threshold (AT) was estimated using V-slope method. Paired t test was used to analyze data.

Maximal exercise capacity, work rate at the anaerobic threshold, VO$_{2\text{max}}$ and VO$_2$ for body weight was found to be 232.7±30 W, 156.2±24 W, 2931±317 ml/min and 42.8±6.6 ml/kg/min, respectively. Exercise capacity and VO$_2$ for each kilogram body weight in response to the aerobic region was found to be
significantly higher than the anaerobic regions of incremental exercise: 136.2±25 W and 21 ml/min/kg versus 76.4±19 W and 11 ml/min/kg (p<0.05).

Determination of cardiorespiratory and metabolic response during incremental exercise test could provide important information about systems capacity. However evaluation of aerobic and anaerobic regions of incremental exercise will provide much sensitive information. Obtained data from the trained subjects may be used as reference values for future studies concerning patients, sedentary and well trained subjects.

Key words: Exercise Test, O$_2$ Uptake, Heart Rate, Anaerobic Threshold, Aerobic Fitness.
3. GİRİŞ

Efor testi, uygulama olarak ilk kez basamaklı ve hareket edebilen bir sistem ile İngiltere’de kullanıldı. Bu sistem on dokuzuncu yüzyılın başlarında İngiliz mühendis William Cubit tarafından geliştirildi. Küçük bir alan içerisinde bireylerin hareket edebilmesini sağlayan basamaklı sistem İngiliz hapishanelerinde mahkumları cezalandırmak amacıyla kullanılmıştır. Önceki ceza vermek gibi farklı amaçlar için kullanılan bu sistem yapılan araştırmalar sonucunda öneminin anlaşılması ile insanlık yararına kullanılmaya başlanmıştır.

Blousfield 1920’li yılların başında, angina pektoris ile elektrokardiyografik ST segment depresyonu arasındaki ilişi ortaya çıkarmıştır. Fail 1928 yılında, ST segment depresyonunun egzersizle ilişkisini, Master ise 1929 yılında geliştirdiği basamaklı sisteminde ilk egzersiz testini gerçekleştirmiştir. Bruce ise kendi adıyla anılan standart Bruce protokolünü 1956 yılında geliştirmiştir (1).

Bruce protokolü çok basamaklı bir protokoldür. Her bir kademe iş yükü artırılmadan önce “kararlı hal” (steady state) durumuna ulaşımasına izin veren üçer dakikalık dönemlerden oluşur. Dezavantajı her kademe büyük iş yükü artışına neden olmasıdır. Bazı hastalar hızlı yük artışını tollere edemeyebilir ve bu nedenle maksimum efora ulaşılmadan test erken sonlandırılmak zorunda kalabilir. Düşük egzersiz düzeyleri amaçlandığında modifiye Bruce protokolü uygulanabilir (1). Modifiye Bruce protokolünde standart Bruce protokolüne; hızı 1.7 mil/st, eğimi ise %0 ve %10 olan iki aşama daha eklenmiştir (Şekil 3.1).
Şekil 3.1: Bruce protokolü (Kaynak 1’den değiştirilerek alınmıştır).

Egzersiz testi ile eşliğin direk ölçümü için kullanılan yöntemler; treadmill ve bisiklet ergometredir. Egzersiz testi treadmill uygulamasında kullanılan farklı birçok protokol vardır. Bunlardan Naughton protokolü (2) yaşlı hastalar ve düşük egzersiz düzeyleri amaçlandığında tercih edilir (Şekil 3.2).

Şekil 3.2: Naughton protokolü (Kaynak 2’den değiştirilerek alınmıştır).
Balke-Ware protokolü (3) ise gençler ve formda olan hastalar için uygundur (Şekil 3.3).

![Diagram](image.png)

Şekil 3.3: Balke protokolü (Kaynak 3’den değiştirilerek alınmıştır).

Şekil 3.4: Farklı egzersiz test protokolleri. 1. Astrand protokolü (Kaynak 4’den değiştirilerek alınmıştır) 2. Ellestad protokolü (Kaynak 5’den değiştirilerek alınmıştır) 3. Harbor protokolü (Kaynak 6’dan değiştirilerek alınmıştır).

Kardiyopulmoner egzersiz testleri (KPET); artan egzersiz sırasında hastanın fonksiyonel kapasitesini değerlendirmek için fizyolojik değişkenlerin ölçümünü içerir (7). Birçok düzenleme sonucunda KPET, yarım yüzyılın aksin süresi beri klinik ve spor bilimlerinin değişik branşları tarafından sıkılkla kullanılmaktadır. İlerleyen zaman içinde KPET uygulamasının diğer birçok kardiyovasküler prosedür gibi teknoloji ve kapsamlı geliştirilmişdir. Kardiyovasküler sistem (8, 9), pulmoner sistem (10, 11) ve metabolik sistem (12, 13) fonksiyon bozukluğu olan hastalarda tanı konulması için değerli bilgiler sağlayan KPET, son derece geçerli ve çok yönlü bir araç olarak kullanılmaktadır.

Wasserman’in “çalışma dişlisi modeli” egzersiz ile kardiyak, metabolik ve pulmoner sistemlerin çalışma durumunu ayrıca O₂ ve CO₂ gazları arasındaki dengeyi açık bir şekilde gösterir (Şekil 3.5).

Radyolojik görüntüleme yöntemleri ile birleştirildiği zaman KPET; kalbin, akciğerlerin ve metabolik sistemlerin yapıları ve fonksiyonları hakkında önemli bilgiler sağlar. Ayrıca hastalıklar hakkında belirtisel bilgi sağlanmanın yanı sıra tanısal doğruluk da bildirir (15). Önceleri egzersiz testi sırasında ölçülen solunum gaz değişim parametrelerinin önemi tam olarak anlaşılması değildir. Gelişen teknoloji ile modern KPET sistemleri; istirahatta, egzersiz sırasında ve iyileşme esnasında gaz değişim verimi analizi için VO₂, VCO₂ ve dakika ventilasyon (V_E) parametrelerinin solunumdan solunuma (breath-by-breath) ölçümleri ile önemli bilgiler elde edilmesini sağlamıştır. Gelişmiş bilgisayar sistemleri; yaygın olarak
KPET'yi kullanılabilecek hale getirerek alması ve saklanması kolay olan veriler ile hem basit hem de kompleks analizler sağlar (16).

Vücut organ ve sistemlerin fonksiyonel durumları hakkında KPET önemli bilgiler verse de bu testlerin uygulanmasını kısıtlayan faktörler bulunmaktadır. Bunlar;

- Ek donanım ihtiyacı (KPET sistemi),
- Testlerin uygulama ve yorumlanmasında uzman olan personel eksikliği,
- Kardiyovasküler uzmanların eğitiminin sınırlı olması veya yokluğu,
- Bu teknikte pulmoner uzmanlar tarafından sınırlı eğitim ve
- Klinisyenler tarafından KPET’nin değerinin anlaşılmasındaki eksikliklerdir.

Bu sistemlerden elde edilen data; kalp atım hızı, solunum değişimleri, gaz değişim parametreleri, kan basıncı, iş gücü, elektrokardiyografi bulguları, egzersiz toleransı ve yanıtları hakkında kapsamlı bir değerlendirme yapılabilmesini sağlar.

Ayrıca KPET sırasında ölçülen standart değişkenler ile entegre edilebilir. Ayrıntılı tanısal değerlendirme için KPET kompleks görüntüleme yöntemleri ile gerçekleştirilebilir (14, 16).
3.1. Kardiyo pulmoner Egzersiz Testinin Kullanıldığı Durumlar

1. Solunum güçlüğü veya egzersiz kapasitesindeki azalma nedenleri belirsiz olduğu zaman organ ve sistemleri tanımlamaya imkan sağlayabilir (17, 18).

2. İş üretibilme kapasitesindeki azalmanın (aerobik fitnes azalması) objektif bir değerlendirmesini sağladığından KPET oldukça önemlidir.

3. Aerobik fitnesdeki artış, kas hücreleri ve akciğerler arasında gaz alışverişinde gelişmiş verimlilik; etkili ilaç tedavisi ve rehabilitasyonun göstergesi olduğundan kullanımı yaygındır.

4. Ağır ameliyata maruz kalacak olan hastalarda KPET, ameliyat sonrası ölüm riskinin preoperatif değerlendirmesi için cerrahi bilimlerde önemlidir (7, 16, 19, 20).

3.2. Egzersiz Tipleri

Birçok çeşidi olmasına rağmen KPET’nin en çok tercih edilen tipleri 2 ana grupta değerlendirilir. Bunlar; sabit yük egzersiz testleri (hafif veya orta, ağır ve şiddeti düzenli olarak artışa karşı yapılan egzersiz testidir (21).

3.2.1. Sabit Yük Testi

Sabit yük egzersiz testlerinde iş gücü belirli oranda birden artırılır ve test boyunca devam ettirilir (Şekil 3.6). Sabit iş gücü testleri, O₂ ve CO₂ transportu için spesifik organ sistemleri tarafından fizyolojik yanıtların çalışmasına olanak verir. Hem de kontrol mekanizmalarının incelenmesini kolaylaştırır. İş gücünün düzenli olarak arttığı egzersiz testleri için tanımlanan ölçümlerin tümü sabit iş

Şekil 3.6: Sabit iş yükü egzersiz test örneği. 4 dk. boyunca 20 W’lık ısınma dönemi ve maksimum efora kadar devam ettirilen sabit iş yükü (40W, 50W ve 60W’lık) dönemi.

1. **Hafif veya orta şiddetteki egzersizler:** Bu egzersiz tipinde vücut çok büyük bir stres altında olmayıp sürdürebilir bir aktiviteyi gerçekleştirmektedir. Bu test sırasında arteriyal kan laktik asit konsantrasyonu artmayıp sabit kalmaktadır.

2. **Ağır şiddetteki egzersizler:** Bu gruptaki egzersiz sırasında arteriyal kan laktik asit konsantrasyonu başlangıçta hafif artmakta fakat egzersizin devamı ile birlikte sabit kalmakta daha fazla artmamaktadır.
3. Çok ağır şiddetteki egzersizler: Bu gruptaki egzersiz sırasında arteriyal kan laktik asit konsantrasyonu egzersizle birlikte artmaya başlamaktadır. Bu artış sürekli olarak devam etmektedir.

3.2.2. İş Gücünün Düzenli Olarak Arttığı Egzersiz Testi

İş gücünün düzenli olarak arttığı (yükleme testi) egzersiz testinde iş gücü sıfırдан başlatılıp deneklerin toleranet edebilecekleri en üst seviyeye kadar devam ettirilir. İş gücünün düzenli olarak arttığı egzersiz testi sırasında yapılan ölçümler çok önemlidir. Bu ölçümler testlerin değerlendirilmesini yapan bireye birçok kolaylık sağlar. Bunlar;

- Kişinin egzersiz limiti düzeyi değerlendirilir.
- Performans yeterliliği ile eksternal-internal gaz değişim eşleşmesinin değişik oranlarının tespitini sağlar.
- Egzersiz sırasında ilk olarak anormallik gösteren organ sistemini ve bunun hangi VO\(_2\) değerinde meydana geldiğini belirler.
- Test, nispeten daha düşük iş gücünde başlar bundan dolayı büyük kas kuvveti veya ani, büyük bir kardiyorespiratuvu stres uygulamasını gerektirmez.
- Deneğe, yalnızca birkaç dakika boynuca yüksek çalışma oranlarında baskı yapılır.
- VO\(_2\)-çalışma oranı ilişkisi, belirlenebilir (bisiklet ergometrisi).
Şekil 3.7: İş yükünün dakikada basamaklı olarak (üstte) ve rampa şeklinde (altta) arttığı egzersiz test protokolleri. a, b, c iş yükü artış sırasıyla dakikada 30, 15 ve 5 watt olmaktadır (Kaynak 14'den değiştirilerek alınmıştır).

Sabit yük egzersiz testleri sadece aerobik veya anaerobik iş gücü yüklerini içerir. Buna karşılık şiddet düzenli olarak artan yüke karşı yapılan egzersiz testleri hem aerobik hem de anaerobik egzersiz kapasitelerini içermekte olup aynı test esnasında iş gücü sürekliği sağlanarak bireylerin aerobik ve anaerobik egzersiz bölgelerindeki organ ve sistemlerinin fonksiyonel durumları karşılaştırılmalı olarak değerlendirilebilir (22).

Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında aerobik ve anaerobik egzersiz bölgelerinde solunum sisteminin, kalp atımının, metabolizmanın uygulanan iş gücü ile ilişkisi belirlenebilir. Ayrıca bu iki farklı metabolizma bölgesinin karşılaştırılması araştırmacıya bireylerin durumu ile ilgili önemli bilgiler sağlayabilir.
Tablo 3.1: KPET’si Açıklayan Sorular, Hastalık Örneği ve Anormallik Belirtileri (Kaynak 23’den değiştirilerek alınmıştır).

<table>
<thead>
<tr>
<th>SORU</th>
<th>HASTALIK ÖRNEĞİ</th>
<th>ANORMALLİK BELİRTİLERİ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egzersiz kapasitesinde azalma var mıdır?</td>
<td>Herhangi bir hastalik</td>
<td>VO₂max</td>
</tr>
<tr>
<td>Egzersiz için metabolik ihtiyaçta artış var mıdır?</td>
<td>Obezite</td>
<td>VO₂-iş gücü ilişkisi</td>
</tr>
<tr>
<td>Egzersiz kapasitesinin azalması bozulan O₂ akımı sonucunda mı olmaktadır?</td>
<td>Kalp; periferal vasküler; pulmoner vasküler; anemi; hipoksemi; karboksihemoglobin</td>
<td>EKG; kan basıncı; AE; kan laktatı; HCO₃⁻; ΔVO₂/ΔW; VO₂/Kalp atım hızı; HbCO</td>
</tr>
<tr>
<td>Egzersiz kapasitesinin azalması azalan solunum kapasitesi sonucunda mı olmaktadır?</td>
<td>Akciğer; göğüs duvarı</td>
<td>Solunum rezervi: V₈/V₇</td>
</tr>
<tr>
<td>Ventilasyon-perfüzyon eşleşmesinin anormal bir değeri var mıdır?</td>
<td>Akciğer; pulmoner dolaşım</td>
<td>P(A-a)O₂; P(a-ET)CO₂; V₈/V₇; V₇/VCO₂</td>
</tr>
<tr>
<td>Kaslarda O₂ veya substrat kullanımında bir kusur var mıdır?</td>
<td>Kas glikolitik veya mitokondrial enzim kusurları</td>
<td>VO₂ ve VCO₂ kinetikleri, kalp atım hızı, kan laktatı, laktat/pirüvat oranı</td>
</tr>
<tr>
<td>Egzersiz kapasitesinin azalması davranış problemi nedeni ile mi olmaktadır?</td>
<td>Sinir hastalığı</td>
<td>Solunum modeli</td>
</tr>
<tr>
<td>İş üretimindeki azalma zayıf efor nedeni ile mi olmaktadır?</td>
<td>İlkinci kazaçla zayıf efor</td>
<td>Kalp atım hızı rezervi; Solunum rezervi; R tepe noktası; P(A-a)O₂; P(a-ET)CO₂</td>
</tr>
</tbody>
</table>

Solunum rezervi = Maksimum Solunum Kapasitesi - Maksimum egzersizde solunum; ΔVO₂/Δ iş gücü = iş oranında artışa bağlı olarak VO₂'de artar; V₈/V₇ = fizyolojikölü boşluk/tidal hacim oranı; kan basıncı; P(A-a)O₂ = alveolar-arterial PO₂ farkı; HbCO = karboksihemoglobin; P(a-ET)CO₂ = arterial- tidal sonu PCO₂ farkı; kalp atım hızı rezervi = tahmin edilen maksimum kalp atım hızı - maksimum egzersiz kalp atım hızı; V₇/VCO₂ = CO₂ için solunum denkliği; pik R = pik gaz değişim oranı.
3.3. Kardiyopulmoner Egzersiz Testi Sırasında Ventilasyon ve Pulmoner Gaz Değişim Cevabı

Fiziksel egzersiz performansı yeteneği, kaslara O\textsubscript{2} tedariği için kardiyovasküler sistemın kapasitesi ve akciğerler yoluyla kandan CO\textsubscript{2} temizlemek için pulmoner sistemin yeteneğiyle kritik olarak ilgilidir. Kardiyovasküler ve pulmoner sistem, hem O\textsubscript{2}’nin dağıtımı hem de CO\textsubscript{2}’nin dokulardan uzaklaştırmasını sağlamak için birlikte çalışır.

Bunun gerçekleşmesi için meydana gelen 4 süreç vardır:

1) Pulmoner ventilasyon veya akciğerlerin içine ve dışına hava hareketi;
2) Pulmoner difüzyon veya akciğerler ve kan arasında O\textsubscript{2} ve CO\textsubscript{2}’nin değişimi;
3) Kanda O\textsubscript{2} ve CO\textsubscript{2} taşınımı;
4) Kapiller gaz değişimi veya kapiller kan veya çalışan kas arasında O\textsubscript{2} ve CO\textsubscript{2}’nin değişimi.

İlk iki süreç eksternal solunum olarak adlandırılır çünkü akciğerlere ve ardından kana gelen havadan gazların değişimini içerir. Dördüncü basamağa genellikle internal solunum denir. Çünkü kan ve dokular arasındaki gaz değişimini içerir. Bu iki süreç dolaşım sistemi ile bağlantılıdır. Egzersiz sırasında, eksternal ve internal solunum için istirahatte belirgin olmayan anormallikleri ortaya çıkarabileceği için KPET ayrı bir öneme sahiptir. Genellikle istirahatte yapılan pulmoner ve kardiyak fonksiyon testleri, egzersiz kapasitesi ve egzersiz intoleransı nedenleri ile ilgili mekanizmaları (kalp veya akciğer hastalığı olan bireylerde) güvenilir olarak belirleyemez.
Şekil 3.8: Normal bireylerde KPET cevabı. Vertikal kesikli çizgiler; panel 1, 2, 3, 6, 8 ve 9’da artan iş gücü periyodunun başlangıc ve bitişiğini göstermektedir. İyileşme döngüsü, sola vertikal kesikli çizgiden önce 3 dakikalık süre için uygulandığıni, Panel 3’te köşegen çizgi 10 ml/min/W slope’ta VO₂ artışını göstermektedir. Panel 5’te köşegen çizgi; 1’in slope’dur ve sağ üstte “X” birey için maksimum kalp atım hızı ve VO₂ tahminidir (Kaynak 14’den değiştirilerek alınmıştır).
Şekil 3.9: Antrenmanlı bireylerde KPET cevabı. Vertikal kesikli çizgiler; panel 1, 2, 3, 6, 8 ve 9'da artan iş gücü periyodunun başlangıç ve bitişini göstermektedir. İşleyiş döngüsü, sola vertikal kesikli çizgiden önce 3 dakikalık süre için uygulandı. Panel 3'te köşegen çizgi 10 ml/min/W slope’ta VO₂ artışını göstermektedir. Panel 5'te köşegen çizgi; 1'in slope’dur ve sağ üstte "X" birey için maksimum kalp atım hızı ve VO₂ tahminidir (Kaynak 14'den değiştirilerek alınmıştır).
Şekil 3.10: Kalp hastası olan bireylerde KPET cevabı. Vertikal kesikli çizgiler; panel 1, 2, 3, 6, 8 ve 9’da artan iş gücü periyodunun başlangıcı ve bitişini göstermektedir. İyileşme döngüsü, sola vertical kesikli çizgiden önce 3 dakikalık süre için uygulandi. Panel 3’te köşegen çizgi 10 ml/min/W slope’ta VO₂ artışını göstermektedir. Panel 5’te köşegen çizgi; 1’in slope’dur ve sağ üstte "X" birey için maksimum kalp atım hızı ve VO₂ tahminidir (Kaynak 14’den değiştirilerek alınmıştır).
Şekil 3.11: Pulmoner sistem bozukluğu olan bireylerde KPET cevabı. Vertikal kesikli çizgiler; panel 1, 2, 3, 6, 8 ve 9'da artan iş gücü periyodunun başlangıcı ve bitişini göstermektedir. İyileşme döngüsü, sola vertikal kesikli çizginin önce 3 dakikalık süre için uygulandı. Panel 3' te köşegen çizgi 10 ml/min/W slope’ta VO₂ artışını göstermektedir. Panel 5’te köşegen çizgi; 1’in slope’dur ve sağ üstte “X” birey için maksimum kalp atım hızı ve VO₂ tahminidir (Kaynak 14’den değiştirilerek alınmıştır).
Çalışan kaslar tarafından VO₂ artış istirahate oranla 6 katına kadar artabilir, bu ihtiyaç kalp debisi artış (kalp atım hızı×atım hacmi) ile sağlanır. Ayrıca kalp debisi; O₂ verimini kolaylaştıranak iskelet kasları için aktif olmayan dokulardan (örneğin; iç organlara ve böbreğe ait), devamlı olarak O₂ dağıtılmasını sağlar. Akciğerlere kan akımı artış, kalp debisi ve pulmoner damarların vazodilatasyonunda artış ile meydana gelir. Ayrıca kandan en büyük O₂ alımı; arteriovenöz O₂ farkının (a-VO₂) genişlemesiyle kaslara kan perfüzyonunun oluşması ile gerçekleşir.

3.4. Kardiopulmoner Egzersiz Testi Değişkenleri, Standart Ölçümler ve Fizyolojik Etkileri

3.4.1. Anaerobik Eşik

Bunlardan başlıcaları:

- Bireylerin aerobik ve anaerobik kapasitelerinin değerlendirilmesinde (30),
- Hasta ve sporculara tedavi ve antrenman amaçlı olarak iş gücü uygulanmasında (31),
- Egzersiz yoğunluğunun hafif, orta, ağır ve şiddetli olarak sınıflandırılmasında (11).
- Özellikle ağır ameliyat sonrası ortaya çıkacak olan ölüm riskinin belirlenerek ameliyatların başarı oranı arttırılması amacıyla kullanılmaktadır (9, 19, 20).
Aerobik enerji üretiliminin, anaerobik mekanizmalar ile tamamlanmasıyla ulaşılan egzersiz VO\textsubscript{2} üst seviyesi olarak tanımlanan AE; kas ve arteriyel kanda laktat ve laktat/pirüvat oranında artış ile yansıtır.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Log VO\textsubscript{2}'ye karşı log laktat [La-], log pirüvat [Pyr-] ve log laktat/pirüvat (L/P) oranı (Kaynak 14'den değiştirilerek alınmıştır).}
\end{figure}

Arteriyel kan laktat konsantrasyonunun arttığı egzersiz tiplerinde bikarbonat konsantrasyonunda azalma olduğu bazı bilim adamları tarafından ortaya konulmuştur (38, 39).

Non-invaziv AE tespiti, egzersiz sırasında anaerobik metabolizma sonucunda ortaya çıkan ve kanda artmaya başlayan metabolik asit ile bunu tamponlayan sistemler arasındaki (başlaça HCO₃⁻) mücadele sonucunda ortaya çıkan yan ürünlerin, özellikle CO₂ ve neden olduğu Vₑ artışının tespit edilmesine dayanmaktadır (34, 29).

Kan Laktatı (LE). Kan laktat ve laktat/pirüvat oranına dayanan artış.

Laktik Asidozda Meydana Gelen Yüksek VO₂ (LAT). Laktat artış ile yakın bir ilişkili olarak karşılıklı plazma bikarbonatı azalır.
Anaerobik metabolizmanın aktifleşmesi sonucunda ortaya çıkan laktik asidin bikarbonat tampon sistemi tarafından CO₂ ve H₂O’ya dönüşüm basamakları yukarıdaki gibidir.

Egzersiz kapasitesinin yaygın olarak kullanılan submaksimal indeksi, AE veya VE’dir. Ventilasyonda ekspire edilen gazlarla değerlendirilen VE terimi, VO₂ artışını için ilgili Vₑ eksponansiyel artış başlaması egzersiz düzeyi tarafından belirlenir. Bu terim AE’nin bir yansıması olarak düşünülmektedir, belirli bir iş gücü kavramına dayanır. Kas için O₂ kaynağı, O₂ gereksinimini karşılamamaktadır. Bu dengesizlik, son metabolik yan ürün olarak laktatı arttırırken (LE) enerji çıkışı için anaerobik glikoliz bağmlılığını arttırır (41). Dakika ventilasyonda (Vₑ) artış laktik asit Türk laktata dönüşümü esnasında fazla CO₂ üretimini eliminine etmek için gereklidir. Hipoksi olan kas artan laktat üretimi kalınlıksı varlığının belirgin bir göstergesidir. AE genellikle sağlıklı antrenmansız bireylerde ölçülen pik veya maksimal VO₂’nin yaklaşık olarak %45’i ile 65’i arasında olur (42). Genel olarak antrenmanlı bireylerde ise egzersiz kapasitesinin
daha yüksek bir seviyesinde gözlenir (43). Ayrıca yüksek test tekrarı güvenilirliğiyle hem sağlıklı görülen (44) hem de kronik hasta (45) topluluklarda AE gösterilmiştir.

AE için en yaygın üç tanım aşağıdaki gibidir:

1. VCO₂’ye karşı VO₂’nin bir hat boyunca çizilen özdeşliğinde VO₂’nin ayrılışı ile AE tespiti yani V-slope metodu (46) (Şekil 15),

![Şekil 3.15: AE’nin V-slope yöntemi ile tahmini](Kaynak 47’den değiştirilerek alınmıştır).

2. O₂ (V̇E/VO₂) için solunum eşitliğinde sistematik bir artış noktası, CO₂ (V̇E/VCO₂) için solunum eşitliğinde artış olmaksızın görülür yani ventilasyon eşitliği (25) (Şekil 16),

3. Tidal sonu O₂ basıncında (P_{ET}O₂) sistematik bir artış noktası, tidal sonu CO₂ basıncında (P_{ET}CO₂) bir artış olmaksızın görülür (48, 49) (Şekil 16).
Şekil 3.16: AE’yi belirlemek için kullanılan yöntemler. Sırası ile; arter kan laktat düzeyi, V_{E}/VO_{2}, V_{E}/VCO_{2}, $P_{\text{ETO}_{2}}$, $P_{\text{ETCO}_{2}}$ ve V-slope methoduyla AE tespiti (Kaynak 50'den değiştirilerek alınmıştır).
Günümüzde AE’nin V-slope, ventilasyon eşitliği ve tidal sonu parsiyel basıncı yöntemleriyle bulunması en çok kullanılan yöntemlerdir. Pik veya maksimal VO₂’nin benzer bir oranında AE değerleri bu yöntemler ile görsel olarak belirlenir (51). Birlikte anılan AE bulma tekniklerinin üçünün değerlendirilmesi, kan laktatı ile AE tespiti yaklaşımının geliştirilmesinde etkili olabilir (52). AE tespiti deneysel algoritmaların birinin seçilmesiyle, metabolik parametreleri otomatik olarak ölçen modern ekipmanlar kullanılarak yapılmasına rağmen, deneyimli bir eleştirmen tarafından görsel olarak kontrol edilmelidir. AE belirlenmesinde güven, bu noktayı hesaplamakta bağımsız olarak iki veya üç deneyimli gözlemcinin olmasıyla artabilir (51). Kesin terimlerle (ml/dk/kg) ve pik VO₂ yüzdesi olarak AE belirtilmelidir.

3.4.2. Maksimal Aerobik Kapasite

Egzersiz sırasında organ ve sistemlerin dayanıklılığını veya bozukluğunu değerlendirmede kullanılan çeşitli kriterler geliştirilmiştir. Bu önemli kriterlerden bir tanesi bireyin egzersiz sırasında ulaşılabileceği en yüksek VO₂ seviyesini gösteren VO₂max veya maksimum (pik) VO₂’dır (11, 41). Genel olarak ulaşılan seviye (L/dk) veya kg başına tüketim (ml/dk/kg) şeklinde VO₂max değerlendirilmektedir (53). Normal VO₂max değeri sağlıklı sedanter bireyler için 25-40 ml/dk/kg iken yüksek antrenmanlı sağlıklı bireylerde 75 ml/dk/kg’ye kadar çıkmaktadır (54). Bununla birlikte VO₂pik her testte görülebilecek bir parametre olmadığında genelde bireylerin ulaştığı seviyeyi gösteren VO₂max kullanılmaktadır. Egzersize katılan kas gruplarının büyüklüğüyle VO₂max seviyesi etkilenir.
Şekil 3.17: Supramaksimal iş gücü testlerinden VO₂ (VO₂max) bulunması (A). VO₂ ölçümlerinde düzenli olarak yükselmeye zaman ile olur. İş gücü 1 için VO₂ asimtotu VO₂max'dan düşüktür. İş gücü 2 VO₂, 3 ve 4 iş gücü ile ulaşılan VO₂ gibi aynı değere ulaştır. Çünkü 2, 3 ve 4 iş gücü için maksimum VO₂ artan iş gücüne rağmen aynıdır, bu yapılan çalışma formu için VO₂max'ı tanımlar. Maksimal artan egzersiz testinden VO₂max ve maksimum VO₂ arasındaki ayrımın gösterimi (B). VO₂ iş gücü eğiminin düzleşmesi bireyin maksimum iş gücü, bireyin maksimal VO₂ veya VO₂max değeridir (Kaynak 23’den değiştirilerek alınmıştır).

Vücut organ ve sistemlerinin fonksiyonel durumlarının sağlamlık derecesine göre O₂ kullanımı için bir üst sınır vardır. Bu, egzersiz kası için O₂ çıkış ve soluk alıp-verme kapasitesi için potansiyel maksimal kalp debisi ile kararlaştırılır. VO₂’den bu üst sınır, şiddetli düzenli olarak artan bir egzersiz testi esnasında iş gücü oranında artış olması rağmen VO₂’den bir plato oluşmasıyla gösterilerek tespit edilebilir (50) (Şekil 3.17). Böylece VO₂max, iş gücü oranında bir artış oluşmasına rağmen daha fazla VO₂ artışi olmamasıyla egzersizin belirli bir formu için en yüksek VO₂ ulaşılabilirliğini temsil etmiştir (16). İş gücünün düzenli olarak arttığı egzersiz testi esnasında VO₂’de plato, maksimal bir VO₂ için hedefe ulaşılması anlamında karar vermek için gerekli kantı sağlar. Maksimum VO₂, VO₂max’ a eşit olmuyabilir.
En sağlıklı deneklerde bile bacaklarda yorgunluk oluşması nedeni ile iş gücü düzenli olarak olan egzersiz testi esnasında plato açık olarak görülmediği zaman, VO$_{2\text{max}}$’a yakın yaklaşık bir tahmin yapılmasıyla maksimum VO$_2$ elde edilmiş olur. İş gücünün düzenli olarak arttığı egzersiz testi esnasında deneğin bacak ya da göğüs ağrısı, nefes darlığı ya da motivasyon eksikliği gibi durumlarda mekanik sınırlamalar nedeniyle egzersiz durdurulduğunda zaman VO$_2$’de plato görülmez. Örneklerde, platonun görülme oranı oldukça düşüktür (23). Kardiyopulmoner sistem limitlerinin tanımlanmasında metrik olarak kullanıldığı için VO$_{2\text{max}}$ önemli bir parametredir. Pik egzersizde ortaya çıkan VO$_{2\text{max}}$; kalp debisi ve arteriyovenöz O$_2$ farkı [C(a-v)O$_2$] sonucunun Fick denklemi yardımıyla değerlendirilmesi ile belirlenir;

$$\text{VO}_{2\text{max}}=(HR\times SV)\times [\text{C(a-v)O}_2]$$

Burada; HR kalp atım hızı ve SV atım hacmidir. Dakika başına litrede O$_2$ olarak ölçülmesine rağmen genellikle intersubject karşılaştırmaları kolaylaştırırak için VO$_{2\text{max}}$ dakikada vücut ağırlığının kilogramı başına O$_2$ miliilitresi olarak tanımlanır. Vücut ağırlığına bağlı olarak daha yüksek bir VO$_{2\text{max}}$’a ulaşılancağından belirli bir standart getirmek için VO$_{2\text{max}}$ değerlendirilmesi ml/kg/dk ifadesi ile vücut ağırlığı için normalleştirilir. Ayrıca egzersiz kapasitesi özellikle iş gücünden tahmini olarak değil de direkt olarak VO$_2$ ölçümüyle elde edildiği zaman çoğunlkla metabolik eşitliklerle (METs) ifade edilir (16). Normal standartlar için referans eşitlikleri VO$_2$ ölçüldüğünde veya tahmin edildiğinde spesifik olmalıdır çünkü tahmini değerler çeşitli varsayımlar gerektirir.
ve VO₂ üzerinde tahmin eğilimindedir. Referans eşitlikleri ayrıca test koşu bandı veya bisiklet ergometrisinde yapıldığında spesifik olmalıdır çünkü egzersiz kapasitesi koşu bandında genellikle %10 ila %20 daha fazladır (55).

Maksimal VO₂ ölçümü, bireyin fizyolojik üst sınırına ulaşıldığı anlamına gelir (hem de maksimal aerobik kapasite olarak adlandırılır). Maksimal VO₂ (fizyolojik VO₂ₘₐₓ) son iki egzersiz iş gücü arasındaki VO₂'de bir platoyla tanımlanmıştır ve belirli bir süre için maksimal eforun elde edilmiş olmasını ve sürdürülebilir olmasını gerektirir. Çünkü bunun belirlenmesi subjektiftir, tanımlamak zor olabilir ve kardiyovasküler ve pulmoner hastalığı olan hastalar test edildiği zaman nadir olarak gözlenir, pik VO₂ terimi egzersiz kapasitesini ifade etmek için klinik olarak daha yaygın olarak kullanılır. Aksine VO₂ₘₐₓ terimi maksimal fizyolojik yanıt başarısı daha muhtemel olduğundan sağlıklı olarak görülen bireylerde egzersiz kapasitesini tanımlamak için daha sık kullanılır (16).

3.4.3. Oksijen Pulse

Kalp atım hızına VO₂’nin bölünmesiyle O₂ pulse bulunur (VO₂/HR). Periferal dokular tarafından alınan O₂’nin hacmi ya da her kalp atım hızı pulmoner kana eklenen O₂ hacmidir. Eğrinin yukarıya kayması ilk olarak kalp atım hacmine bağlıdır. Eğer kalp atım hacmi azalırsa, \((C(a-v)O₂) \) O₂, oldukça yavaş olarak iş gücüne maksimal hacme varır ve O₂ pulse yavaş asimptota sahiptir. Maksimum O₂ pulse, tüm arterial O₂’nin azalması nedeniyle, kansızlıkta, yüksek karbohemoglobin seviyelerinde, arterial hipoksemide görülür.
Şekil 3.18: Sağlıklı, Kalp hastalık (K.H) ve kronik obstrüktif solunum yolları hastalık (OSH) olan bireyler için VO\(_2\) ile ilgili kalp atım hızında değişim karakteristikleri (Kaynak 14’den değiştirilerek alınmıştır).

Şekil 3.19: Sağlıklı, Kalp hastalık (K.H) ve kronik obstrüktif solunum yolları hastalık (OSH) olan bireyler için iş gücü artışı ile ilişkili olarak (O\(_2\) pulse) VO\(_2\)/kalp atım hızı karakteristik değişiklikleri (Kaynak 14’den değiştirilerek alınmıştır).
3.4.4. Kalp Atım Hızı

Egzersiz sırasında kalp atım hızının iş gücüne göre değişmeye başladığı nokta ile AE tespiti yapılabileceği öne sürülmektedir (63). Yapılan çalışmalarda, kalp atım hızı ile iş gücü arasındaki ilişkinin değişik fiziksel aktivitelerde uygulanabileceği gösterilmiştir (64).

Şekil 3.20: AE belirlenmesinde kullanılan kalp atım hızı ile iş gücü arasındaki ilişkinin Conconi testi ile bulunması (Kaynak 63’den değiştirilerek alınmıştır).

3.4.5. İş Güzünden Oksijen Alınımı ve Metabolik Eşitlik Tahmini

Bazı laboratuarlar, VO₂’yi direk olarak ölçmekte ziyade egzersiz esnasında çalışma hızından VO₂’yi tahmin eder. Bu pratik, potansiyel olarak yanıltıcı olabilir fakat vazgeçilmezdir. Metabolik eşitlik (MET “Metabolic Equivalent of Task”) 40 yaşında, 70 kg bir erkeğin ortala dinlenim VO₂’sinden türetilmiştir. Vücut ağırlığının kilogramı başına 3,5 ml/min’e eşittir. Bilinen sabitlenmiş bu ilişkinin ergometre çalışma hızı ve deneğin VO₂’si arasında egzersiz esnasında var olduğunu farz ederek bazı laboratuvarlar, dakika başına mililitrelerde VO₂’nin tahminini yapar (65). Elde edilen VO₂ vücut ağırlığının kilogramı başına denek
tarafından yapılan MET performansını elde etmek için 3,5 ile bölünür (66, 67). Göz önünde bulundurulması gereken bir diğer nokta ise MET hesaplanmasında kullanılan ergometrinin kalibrasyonunun doğru olarak ayarlanmadığı durumlarda, hesaplanacak olan VO₂ ciddi derecede yanlış sonuçlar verebilir. Buna ek olarak, VO₂ eğer kararlı bir durumda değilse, VO₂ çalışma hızı yaygınlaşarak daha az veya daha fazla olabilir. Vurgulanması gereken bir diğer nokta ise VO₂ genellikle, kardiyovasküler hastalarda çalışma hızı artışıyla doğrusal olarak artmaz. Böylece, VO₂ veya MET’i tahmin etmek için çalışma hızını kullanmak, bu hastalarda bir abartıya götürecek. Sonuç olarak, vücut ağırlık faktörü VO₂ tahminini için hesaba alınmalıdır. Fakat MET’e VO₂’yi gerçekten ölçmeden çalışma hızının dönüşümü özellikle hastalarda yanlış ve bu metot kullanılmamalıdır. Çalışma hızı-VO₂ ilişkisinin analizi, sadece ergometre ile değerlendirilir ve ölçüm sistemi olarak doğru kalibre edilmelidir (25, 68).

3.4.6. Pik Solunum Değişim Oranı

Solunum R değeri, özellikle ventilasyonla ekspire edilen gaz analizinden elde edilen VCO₂ ve VO₂ arasındaki oranı olarak tanımlanır. Bireyin eforunu belirlemekte kalp atım hızını değerlendirmeye ihtiyaci ortadan kaldırır. Egzersiz fiziolojik yanıtı birey eforunun göstergesi olarak en doğru ve güvenilir biçimde pik R değeri ile ortaya koyular. Sağlıklı bireyler ve tüm hasta popülasyonlarında tutarlıdır. Sağlıklı yetişkin bireylerde R değeri; 1.10 ve 1.20 arasında maksimal efor için iyi bir tanımlayıcı olarak kabul edilir (69). Egzersiz esnasında ≥1.10 pik R değeri genellikle mükemmel birey eforunun bir göstergesi kabul edilir fakat testi durdurmak için bir gösterge değildir. Solunum R değeri ≥ 1.0’dan AE’ye
ulaşan birçok bireye rağmen AE bazen R değeri <1.0 olduğunda bireylerde tespit edilebilir. Genellikle R değeri; 0.8 ila 0.99 aralığı bir yerde olduğunda AE tespit edilir (16, 25, 60).

3.5. Elektrokardiyoğram

![Şekil 3.21: Normal bir EKG örneğinin şekli.](image-url)

Bu tez çalışmasının amacı:

2. Egzersiz esnasında fiziksel kapasite artımında veya azalmasında rol oynayan faktörler karşılaştırılarak değerlendirilecektir.

3. Metabolizmanın sürekli artış gösterdiği egzersiz testi ile karşılaştırılması sistemlerde meydana gelebilecek problemelerin en kısa sürede ve en etkin biçimde tanınmasına neden olacaktır.

4. Efor kapasitesi normalin altında olan bireylerde; kapasite arttırılmasında rol oynayabilecek sistemler belirlenmeye çalışılacak hatta kapasiteleri yüksek olan sporcularda bile ekstra kapasite artırma yolları belirlenmeye çalışılacaktır.

5. Bireylerin aerobik ve anaerobik egzersiz bölgelerindeki kardiyorespiratuvar ve metabolik cevaplarının analizi ile sedanter, hasta veya yüksek antrenman seviyesine sahip bireylerin değerlendirilmesi için referans verileri oluşturulmaktadır.
4. GEREÇ VE YÖNTEM

4.1. Deneklerin Fiziksel Özellikleri

Bu çalışmaya, fiziksel kapasitesi sedanter bireylere göre daha yüksek olan 18-25 yaş arası 24 antrenmanlı erkek denek gönüllük esasına göre katıldı. Çalışmaya katılan tüm deneklerin fiziksel özellikleri Tablo 4.1'de verilmiştir. Egzersiz testlerinde olabileceği tüm yan etkiler veya olumsuzluklar (çalışma esnasında bacaklarda yorgunluk, terleme, su kaybı, soluk alıp verme sayısında ve kalp atım hızında artma meydana geleceği gibi tüm ihtimaller) deneklere ayrıntılı olarak anlatıldı. Deneklerin hepsi Fırat Üniversitesi Tıp Fakültesi İnsanlar Üzerine Yapılacak Araştırmalar Etik Kurulu Başkanlığı’ndan alınan izin belgesi (10.03.2011-05/05-sayı:76) ve gönüllü olur formunu okuyup onayladıktan sonra egzersiz testine katıldılar.

Çalışmaya katılan denekler egzersiz testlerine başlamadan önce belli kriterlere göre değerlendirilmeye alındı. Bu kriterlere uymayanlar çalışmaya alınmadı.

Bu önemli kriterler:

- Bireylerin egzersiz yapmasına engel olabilecek herhangi bir akut veya kronik rahatsızlığın (yüksek tansiyon, şeker, kalp ve akciğer hastalıkları vb.) bulunmaması,
- Egzersiz yapmalarına fiziksel bir engellerinin olmaması (ortopedik veya kas hasarı olan),
- Sigara, alkol ve herhangi bir ilaç kullanımı gibi alışkanlıkların bulunup bulunmaması.
Tablo 4.1: Çalışmaya katılan deneklerin fiziksel özellikleri (yaş; yıl, boy; cm ve vücut ağırlığı; kg) ve VKİ (VKİ, kg/m²) değerleri.

<table>
<thead>
<tr>
<th>Denek No</th>
<th>Yaş (Yıl)</th>
<th>Boy (cm)</th>
<th>Vücut Ağırlığı (kg)</th>
<th>VKİ (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>180</td>
<td>68.2</td>
<td>21.0</td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>180</td>
<td>68.2</td>
<td>21.0</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>190</td>
<td>74.0</td>
<td>20.4</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>190</td>
<td>74.0</td>
<td>20.4</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>195</td>
<td>82.7</td>
<td>21.7</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>195</td>
<td>82.7</td>
<td>21.7</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>185</td>
<td>80.9</td>
<td>23.6</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>185</td>
<td>80.9</td>
<td>23.6</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>186</td>
<td>72.3</td>
<td>20.8</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>186</td>
<td>72.3</td>
<td>20.8</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>190</td>
<td>81.9</td>
<td>22.6</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>190</td>
<td>81.9</td>
<td>22.6</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>197</td>
<td>69.4</td>
<td>17.8</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>197</td>
<td>69.4</td>
<td>17.8</td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>173</td>
<td>65.0</td>
<td>21.7</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>169</td>
<td>58.3</td>
<td>20.4</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>170</td>
<td>57.1</td>
<td>19.7</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>177</td>
<td>62.2</td>
<td>19.8</td>
</tr>
<tr>
<td>19</td>
<td>22</td>
<td>185</td>
<td>70.4</td>
<td>20.5</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>175</td>
<td>53.4</td>
<td>17.4</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>175</td>
<td>61.9</td>
<td>20.2</td>
</tr>
<tr>
<td>22</td>
<td>18</td>
<td>169</td>
<td>65.1</td>
<td>22.7</td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>169</td>
<td>58.3</td>
<td>20.4</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>181</td>
<td>72.8</td>
<td>22.2</td>
</tr>
</tbody>
</table>

Ortalaması±SS 19.7±1.87 182.8±9.2 70.1±8.8 20.9±1.65
Deneklerin vücut kompozisyonlarını, sabah aç karına, ayaktan ayağa biyoelektrik impedans analiz yöntemi ile ölçülüp değerlendirildi. (Tanita, Body Composition Analyser, TBF-300M) (73). Bu değerlendirme; vücut yağ oranı, vücut yağ yüzdesi, yağsız vücut ağırlığı, total vücut su miktarı ile VKİ’yi içermektedir.

4.2. Deneklerin Egzersiz Testine Hazırlanması

Deneklere egzersiz testine katılmadan önce testi yapacakları laboratuvar ortamı ve aletleri gösterildi. Bunun amacı deneklerin heyecan faktörünü ve buna bağlı olarak sonuçlarda çıkabilecek hataları minimuma indirmektir. Egzersiz çalışmaları sabah 8-10 arasında, aç karına (veya en az iki saat öncesinde yemek yememiş olması), deneklerin uykusunu almış ve dinlenmiş olmaları göz önünde bulundurularak uygulandı. Ayrıca bu çalışmalarından önce deneklere performanslarını etkileyebilecek çay, kahve veya herhangi bir ilaç almamaları gerektiği söylendi.

Şekil 4.1: Egzersiz testi sırasında EKG elektrot bağlantılarının yerleşim düzeni.
4.3. Egzersiz Test Protokolü

Çalışmamızda deneklere iş gücünün düzenli olarak arttığı egzersiz test protokolü (rapid incremental exercise test) uygulandı (17).

4.3.1. İş Gücünün Düzenli Olarak Arttığı Egzersiz Testi

Yükleme testi olarak da bilinen iş gücünün düzenli olarak arttığı egzersiz testi;

- Isınma dönemi
- Yükleme dönemi
- İyileşme dönemi olmak üzere 3 basamaktan oluşmaktadır (Şekil 4.2).

Isınma Dönemi: Egzersiz testi, minimum 4 dakikalık 20 W (pedal çevirme hızı 50-80, ortalama 60 rpm) iş gücünde isınma dönemi ile başladı (Şekil 4.2). Bu dönemde deneklerin heyecan veya anksiyete durumları varsa değerlendirip düzeltildi. Bu başlangıçtaki isınma döneminde deneklerde oluşabilecek heyecan ya da stres durumu testin devamındaki sonuçları olumsuz yönde etkileyebileceğinden testin önemli bir kısmını oluştururmakdadır (74). Böylece test sırasında deneğin kardiyak, respiratuvar ve metabolik durumunu belirlememizi sağlayan akciğer gaz değişim parametrelerinde oluşabilecek yanlış sonuçlardan kaçınıldı. Doğru bir şekilde elde edilen parametreler sonucunda tespit edilen AE’nin hatasız olarak elde edilmesi sağlandı.
Şekil 4.2: Çalışmalarında kullanılan şiddeti düzenli olarak artan yük karşı yapılan egzersiz test protokolü. 20 W’take –4 ve 0 dakikalar arası isınma dönemini gösterir. 0’dan itibaren yükleme (ramp) dönemi başlamakta ve iş gücü dakikada 15 W olarak bilgisayar kontrollü olarak artırıldı. İyileşme dönemi ise yükleme döneminin sonunda maksimum iş gücünün tekrar 20 W’a indirildiği kısımdır.
Yükleme (Ramp) Dönemi: Deneklerin heyecan veya anksiyete durumları ısıtma döneminde değerlendirilip düzeltildikten sonra elektromanyetik bisiklet ergometrenin (VIAspirt™ 150/200P) iş gücü bilgisayar kontrollü olarak dakikada 15 W (5 W/20 sn) olarak arttırdı. Bu artış bireyin sağlık durumuna göre farklılıklar içermekte olup her bir bireyin artık pedal çeviremediği (40 rpm alta düşürülmeyecektir) duruma kadar yanı maksimum efora kadar devam etti (Şekil 4.2).

İyileşme Dönemi (Recovery Period): Bireyler maksimal efor kapasitelerine (W_{max}, W) ulaştıklarında ve artık pedal çevirmeye devam edemeyecekleri noktaya ulaşıklarında bisiklet ergometrenin pedal gücü bilgisayar kontrollü olarak ısıtma dönemindeki değer olan 20 W’a düşürüldü. Denekler 20 W iş gücünde en az dört dakika süre ile pedal çevirmeye devam etti.

Bu test sırasında metabolik (enerji substrat kullanımı, RQ), kardiyovasküler (kalp atım hızı, O₂ pulse) ve respiratuvar (Vₑ, solunum sayısı, solunum derinliği, R, solunum O₂ eşitliği, solunum CO₂ eşitliği, PₑTO₂ ve PₑTCO₂ vb.) sistemlerin verdiği cevaplar aeorbik ve anaerobik egzersiz bölgeleri için ayrı ayrı değerlendirildi (75).

4.4. Kardiyak, Metabolik ve Respiratuvar Parametrelerin Ölçümü

Deneklere uygulanan egzersiz testi Yeditepe Üniversitesi Egzersiz Laboratuari'nda metabolik gaz ölçüm cihazı (MasterScreen CPX, Germany) kullanılarak yapıldı. Deneklerin egzersiz testleri sırasında akciğer gaz değişim parametreleri ve metabolik değişimleri solunumdan solunuma (breath-by-breath) hesaplandı.

Deneklerin egzersiz sırasında kalp atım hızı, VO₂ (ml/dk, STPD, standart ısı, standart basınç ve kuru hava), VCO₂ (ml/dk, STPD), Vₑ (L/dk, BTPS, vücut ısıısı ve basınç), O₂ için solunum eşitliği (Vₑ/VO₂), CO₂ için solunum eşitliği (Vₑ/VCO₂), PₑTCO₂ (kPa), PₑTO₂ (kPa) değerleri ölçüldü.
4.5. Anaerobik Eşliğin Hesaplanması

Aerobik ve anerobik metabolizma değişim bölgesini tanımlayan AE:

a) Solunum-metabolizma-ış gücü kriterleri ile belirlendi (25) (Şekil 4.3),

b) V-slope tekniği ile yani egzersiz sırasında tüketilen O₂ ile üretilen CO₂ ([VCO₂/VO₂] ilişkisi ile belirlendi (46) (Şekil 4.4),

\[VCO₂ (ml/dk) \]
\[VO₂ (ml/dk) \]

c) Diğer akciğer gaz değişim parametreleri yani O₂ için solunum eşitliği ([Vₐ/VₐO₂]), CO₂ için solunum eşitliği ([Vₐ/VₐCO₂]), \(P_{ETO₂} \) (kPa) ve \(P_{ETO₂} \) (kPa) kriterleri kullanılarak indirekt olarak hesaplandı (49) (Şekil 4.5).
Şekil 4.5: İş gücünün düzenli olarak arttığı egzersiz testi sırasında örnek bir deneğin AE’sinin hesaplanmasında kullanılan VO₂-VCO₂, V̇E/VO₂, PETO₂ ilişkisi. Dikey kesik çizgi aerobic metabolizmadan anaerobik metabolizmaya geçiş bölgesini yani AE’yi göstermektedir.
4.6. Kardiyopulmoner Egzersiz Testi Prosedürleri

4.6.1. Gaz Değişim Sistemlerinin Kalibrasyonu

Modern KPET sistemleri, solunumdan soluma (breath by breath) istirahette, egzersiz esnasında ve iyileşme sırasında VO$_2$ ve VCO$_2$ hesaplanmasına imkan sağlayan hızla yanıt veren O$_2$ ve CO$_2$ sensörleri içerir. Üreticinin önerileri kalibrasyon ile ilgili oldukça değişiklik gösterse de, tüm KPET sistemleri her egzersiz testi öncesinde kalibre edilmelidir. Bu kalibrasyon; hava akım hacimlerini, O$_2$ ve CO$_2$ analizörlerini içermelidir.

Aşağıdaki özel kalibrasyon prosedürleri geçerli datalar elde etmek için yapılmalıdır:

1. Oda havasını (FIO₂); %0 nemde 20.93±0.03% okunmalıdır; ancak kesin fraksiyon neme bağlıdır ve buna göre ayarlanmalıdır. % 100 nitrojen içeren bir kalibrasyon kaynağı %0 O₂ okunmalıdır. Analizörün test esnasında ekspire edilen O₂ fraksiyonu (FEO₂) yaklaşık olarak %16 O₂ olmalıdır.

2. CO₂ analizörü, oda hava fraksiyonunu 0.03±0.02% okunmalıdır ve kalibrasyon tanklarından örneklemeler yapılarak %100 N₂ veya %16 O₂ fraksiyonunun değişmediği kontrol edilmelidir. CO₂ analizöründe, egzersiz esnasında ekspire edilen CO₂ fraksiyonu (FECO₂) yaklaşık olarak %4 CO olmalıdır.

3. Özellikle solunumdan solunuma (breath-by-breath) KPET sistemleri için; analizörün doğal cevap sürelerini kontrol etmek, örnekleme noktası ve analizörler arasında taşıma süresini tam olarak belirlemek gereklidir. Üretici tarafından belirtilen özelliklere sistemin uygun olması önemlidir, bu özellik birçok sistemde mevcuttur.

4. Solunum hacmi ölçümü, pneumotachometreler, kütle akış sensörleri, pitot tüpü flowmetreler, türbin hacmi dönüştürücüleri dahil olmak üzere birçok cihaz ile artık kolayca elde edilebilir. Hepsi stabil bir temel (0 L/min) tespit ederek ve bir şurupadan hacmi bilinen (genellikle 3 veya 4 L) enjeksiyon ile test yapılmalıdır önce kontrol edilebilir. Bu istikrarı sağlamak için farklı akış hızlarında birkaç enjeksiyon yapılmasını tercih edilir, ortalama hatanın bilinen hacminin %3’ünü aşmaması gereklidir (16, 78).
4.6.2. Yazılım Faktörleri

4.6.3. Sistem Bakımı ve Kalite Kontrol

Düzenli olarak doğrulamasının yapılması KPET sistemi için oldukça önemlidir. Gaz değişimi ölçümleri, test yöntemleri tutarlılık gösteriyorsa belirli bir hastada çok defa tekrarlanabilir. Bir sistemin performansını doğrulamak için sıklıkla kullanılan metod periyodik olarak eşlenen bir submaksimal iş gücünde laboratuar personelini test etmektir (muhtemelen 4-6 ay).

Birey kararlı durumdayken (örneğin sabit metabolizma hızı) VO₂ ve diğer KPET değişkenleri tekrar kontrol edilebilir olmalıdır. Sabit yük ile 4-6 dakikada düşük-orta-yoğun egzersiz çoğu kişi kararlı bir durum elde etmek için gereklidir. Kararlı durumda belirlenmiş sabit iş gücüyle VO₂, VCO₂ ve Vₑ için kabul edilebilir varyasyon sınırları gösterilmiştir (80) (Tablo 4.2). Tekrarlanabilir olmasının yanı sıra VO₂, eksternal iş gücünde temel alınan VO₂ tahmini ile karşılaştırıldığı zaman kabul edilebilir bir aralık içinde olmalıdır. Amerikan Spor Koleji denklikleri kararlı durumda yapılan iş gücü değerleri için tavsiye edilen en iyi değerlendirilmiştir (81). Bu bağlamda; tahmin edilen VO₂ sadece kararlı durumda yapılan egzersiz esnasında geçerlidir; kademeli olarak artan yüke karşı yapılan egzersiz testi esnasında VO₂ tahmini yanlışlıklarını uygun şekilde belgelenmiştir (81, 82).
Tablo 4.2: Alınan submaksimal bir iş gücü oranında aynı bireyin tekrarlanan çalışmalarından elde edilen gaz değişim değişkenleri varyasyon limitleri (Kaynak 16, 80 ve 83'den alınmıştır).

<table>
<thead>
<tr>
<th>Değeri</th>
<th>Varyasyon %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oksijen Alınımı (VO₂)</td>
<td>± 5.0</td>
</tr>
<tr>
<td>Karbondioksit Atılımı (VCO₂)</td>
<td>± 6.0</td>
</tr>
<tr>
<td>Dakika Ventilasyon (VE)</td>
<td>± 5.5</td>
</tr>
<tr>
<td>Solunum Gaz Değişim Oranı (R)</td>
<td>± 3.0</td>
</tr>
</tbody>
</table>

Uygun kalibrasyon prosedürleri takip edilmiş olsa bile; modern otomatik KPET sistemleri kesin olmayan, doğru gibi görünen hatalı sonuçlar sağlayabilir. Solunum gaz değişim simülatörleri kalibre KPET sistemlerinde mevcuttur (84). Ancak bu sistemler; nefes alma modellerinde varyasyon, sıcaklık ve nem doğrulamaları ve diğer faktörler dahil olmak üzere insanlarda egzersiz kondisyonlarının mükemmel derecede taklit edemez (16).

4.7. İstatistiksel Analiz

Çalışma sırasında elde edilen değerler ortalama±standart sapma (SS) olarak Orjin 6.0 istatistik programında analiz edildi. Aerobik ve anaerobik egzersiz bölgelerinde elde edilen değerlerin analizinde eşleştirilmiş t-testi ve regresyon analizi kullanılarak istatistiksel analizler gerçekleştirilirdi. İstatistiksel olarak p<0.05 (*) anlamli, p<0.001 (**) çok anlamli olarak kabul edildi.
5. BULGULAR

Egzersiz testi sırasında aerobik ve aneoroobik metabolizma değişim bölgessini tanımlayan AE; solunum-metabolizma-iş gücü kriterleri (Şekil 4.3), V-slope tekniği yani egzersiz sırasında tüketilen O₂ ile üretilen CO₂ (VCO₂/VO₂) arasındaki ilişki (Şekil 4.4) ve diğer akciğer gaz değişim parametreleri yani O₂ için solunum eşitliği (VE/VO₂), CO₂ için solunum eşitliği (VE/VCO₂), PETO₂ (kPa) ve PETCO₂ (kPa) kriterleri kullanılarak indirekt olarak hesaplandı (Şekil 4.5).

Çalışmaya katılan tüm antrenmanlı erkek deneklerin (n=24) şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında verdiği cevaplar analiz edilerek Wₘₐₓ’daği iş gücü değerleri, AE’deki iş gücü değerleri, Wₘₐₓ ve AE’deki her kilogram başına iş üretebilme kapasiteleri ve ortalamalarını (±SS) Tablo 5.1’de verilmiştir. Deneklerin egzersiz testi sırasında ulaşıkları Wₘₐₓ değerleri bireysel kapasite farklılıklar nedeniyle değişmişkte olup (minimum 185 W-maksimum 295 W) ortalama değer 233±30 W olarak bulundu (Şekil 5.1).

Şekil 5.1: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin ulaşıkları Wₘₐₓ ve AE iş gücü değerleri. Değerler ortalama (±SS) olarak verilmiştir (n=24).
Tablo 5.1: Çalışmaya katılan deneklerin W_{max}, AE ve her kilogram vücut ağırlığı başına W_{max} ve AE'deki iş üretebilme kapasiteleri ve ortalama \pmSS değerleri ($n=24$).

<table>
<thead>
<tr>
<th>Denek No</th>
<th>W_{max} (W)</th>
<th>AE (W)</th>
<th>W_{max}/kg (W/kg)</th>
<th>AE/kg (W/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>260</td>
<td>150</td>
<td>3.81</td>
<td>2.19</td>
</tr>
<tr>
<td>2</td>
<td>295</td>
<td>210</td>
<td>4.32</td>
<td>3.07</td>
</tr>
<tr>
<td>3</td>
<td>205</td>
<td>130</td>
<td>2.77</td>
<td>1.75</td>
</tr>
<tr>
<td>4</td>
<td>245</td>
<td>145</td>
<td>3.31</td>
<td>1.95</td>
</tr>
<tr>
<td>5</td>
<td>225</td>
<td>135</td>
<td>2.72</td>
<td>1.63</td>
</tr>
<tr>
<td>6</td>
<td>270</td>
<td>175</td>
<td>3.26</td>
<td>2.11</td>
</tr>
<tr>
<td>7</td>
<td>255</td>
<td>160</td>
<td>3.15</td>
<td>1.97</td>
</tr>
<tr>
<td>8</td>
<td>290</td>
<td>205</td>
<td>3.58</td>
<td>2.53</td>
</tr>
<tr>
<td>9</td>
<td>185</td>
<td>125</td>
<td>2.55</td>
<td>1.72</td>
</tr>
<tr>
<td>10</td>
<td>230</td>
<td>155</td>
<td>3.18</td>
<td>2.14</td>
</tr>
<tr>
<td>11</td>
<td>195</td>
<td>125</td>
<td>2.38</td>
<td>1.52</td>
</tr>
<tr>
<td>12</td>
<td>235</td>
<td>155</td>
<td>2.86</td>
<td>1.80</td>
</tr>
<tr>
<td>13</td>
<td>235</td>
<td>140</td>
<td>3.38</td>
<td>2.01</td>
</tr>
<tr>
<td>14</td>
<td>260</td>
<td>150</td>
<td>3.74</td>
<td>2.23</td>
</tr>
<tr>
<td>15</td>
<td>230</td>
<td>180</td>
<td>3.53</td>
<td>2.76</td>
</tr>
<tr>
<td>16</td>
<td>205</td>
<td>155</td>
<td>3.51</td>
<td>2.65</td>
</tr>
<tr>
<td>17</td>
<td>200</td>
<td>150</td>
<td>3.50</td>
<td>2.62</td>
</tr>
<tr>
<td>18</td>
<td>230</td>
<td>150</td>
<td>3.69</td>
<td>2.41</td>
</tr>
<tr>
<td>19</td>
<td>265</td>
<td>210</td>
<td>3.76</td>
<td>2.98</td>
</tr>
<tr>
<td>20</td>
<td>195</td>
<td>135</td>
<td>3.65</td>
<td>2.52</td>
</tr>
<tr>
<td>21</td>
<td>245</td>
<td>170</td>
<td>3.95</td>
<td>2.74</td>
</tr>
<tr>
<td>22</td>
<td>205</td>
<td>155</td>
<td>3.14</td>
<td>2.38</td>
</tr>
<tr>
<td>23</td>
<td>210</td>
<td>155</td>
<td>3.60</td>
<td>2.65</td>
</tr>
<tr>
<td>24</td>
<td>215</td>
<td>130</td>
<td>2.95</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Ortalama±(SS) 233±30 156±25 3.34±0.4 2.26±0.08
İş gücü değerleri AE’de ise ortalama olarak 156±25 W olarak bulundu (Şekil 5.1) ve bu değer minimum 125 W – maksimum 210 W arasında değişti (Tablo 5.1). Egzersiz sırasında deneklerin ulaştıkları AE ile W\textsubscript{max} arasındaki oran % 67 olarak bulundu. Deneklerin W\textsubscript{max} kapasitelerinin vücut ağırlıklarına oranı minimum 2.38 W/kg ve maksimum 4.32 W/kg değerleri arasında değişmekte olup ortalama olarak 3.34±0.4 W/kg’dir (Tablo 5.1). AE kapasitelerinin vücut ağırlıklarına oranı ise minimum 1.52 W/kg maksimum 3.07 W/kg değerleri arasında değişmekte olup ortalama olarak 2.26±0.08 W/kg bulundu (Tablo 5.1).

\[\text{Şekil 5.2:} \] Deneklerin aerobik ve anaerobik egzersiz bölgelerinde \(\Delta \) iş gücü ortalama (+SS) değerleri (n=24) (*p<0.05).
Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında; ısınma periyodu ile AE arası aerobik bölgede deneklerin ulaştıkları iş gücü ortalama değeri 136.2±25 W iken, AE ile W_{max} arasındaki anaerobik bölgede 76.4±19 W olarak bulundu (Şekil 5.2).

5.1. Şiddeti Düzenli Olarak Artan Yüke Karşı Yapılan Egzersiz Testi Sırasında Oksijen Alımı Cevabı

Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında istirahat döneminde deneklerde VO_{2} değeri ortalama olarak 629±67 ml/dk bulundu. ışınma döneminde 20 W iş gücündeki ortalama VO_{2} değeri ise 747±56 ml/dk olarak bulundu (Tablo 5.2). İş gücünün 15 W/dk olarak artırıldığı yükleme döneminde VO_{2} bisiklet ergometrenin pedal gücünün artmasına paralel olarak artış gösterdi. AE’deki VO_{2} değerleri ortalama 2174±270 ml/dk olarak belirlendi. W_{max} değerinde VO_{2} 2931±317 ml/dk’ya ulaştı (Tablo 5.2).

![Şekil 5.3: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında örnek bir deneğin VO_{2}-iş gücü ilişkisi (düz, eğimli çizgi lineerliği göstermekte).](image-url)
Tablo 5.2: Artan yüke karşı yapılan egzersiz testi sırasında deneklerin bireysel istirahat, ısınma, AE, maksimal VO₂, VO₂max/kg, Δ aerobik VO₂, Δ anaerobik VO₂ değerleri ve ortalamaları (±SS).

<table>
<thead>
<tr>
<th>Denek No</th>
<th>İstirahatta VO₂ (ml) değeri</th>
<th>İsmannada VO₂ (ml) değeri</th>
<th>AE’de VO₂ (ml) değeri</th>
<th>VO₂max (ml) değeri</th>
<th>VO₂max/kg değeri</th>
<th>Δ Aerobik VO₂ (ml) değeri</th>
<th>Δ Anaerobik VO₂ (ml) değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>637</td>
<td>781</td>
<td>2234</td>
<td>3298</td>
<td>48.35</td>
<td>1453</td>
<td>1064</td>
</tr>
<tr>
<td>2</td>
<td>649</td>
<td>723</td>
<td>2506</td>
<td>3593</td>
<td>52.68</td>
<td>1783</td>
<td>1087</td>
</tr>
<tr>
<td>3</td>
<td>649</td>
<td>776</td>
<td>2203</td>
<td>2511</td>
<td>33.93</td>
<td>1423</td>
<td>308</td>
</tr>
<tr>
<td>4</td>
<td>592</td>
<td>654</td>
<td>2069</td>
<td>2670</td>
<td>36.08</td>
<td>1415</td>
<td>601</td>
</tr>
<tr>
<td>5</td>
<td>633</td>
<td>756</td>
<td>2060</td>
<td>2990</td>
<td>36.15</td>
<td>1304</td>
<td>930</td>
</tr>
<tr>
<td>6</td>
<td>648</td>
<td>691</td>
<td>2205</td>
<td>2459</td>
<td>29.73</td>
<td>1514</td>
<td>254</td>
</tr>
<tr>
<td>7</td>
<td>773</td>
<td>717</td>
<td>2135</td>
<td>3216</td>
<td>39.75</td>
<td>1418</td>
<td>1081</td>
</tr>
<tr>
<td>8</td>
<td>605</td>
<td>776</td>
<td>2427</td>
<td>3315</td>
<td>40.97</td>
<td>1651</td>
<td>888</td>
</tr>
<tr>
<td>9</td>
<td>644</td>
<td>723</td>
<td>1727</td>
<td>2714</td>
<td>37.53</td>
<td>1004</td>
<td>987</td>
</tr>
<tr>
<td>10</td>
<td>493</td>
<td>699</td>
<td>1875</td>
<td>2852</td>
<td>39.44</td>
<td>1176</td>
<td>977</td>
</tr>
<tr>
<td>11</td>
<td>635</td>
<td>817</td>
<td>1842</td>
<td>2804</td>
<td>34.23</td>
<td>1025</td>
<td>962</td>
</tr>
<tr>
<td>12</td>
<td>528</td>
<td>694</td>
<td>2094</td>
<td>2992</td>
<td>36.53</td>
<td>1400</td>
<td>898</td>
</tr>
<tr>
<td>13</td>
<td>734</td>
<td>892</td>
<td>2281</td>
<td>2986</td>
<td>43.02</td>
<td>1389</td>
<td>705</td>
</tr>
<tr>
<td>14</td>
<td>671</td>
<td>716</td>
<td>2411</td>
<td>3457</td>
<td>49.81</td>
<td>1695</td>
<td>1046</td>
</tr>
<tr>
<td>15</td>
<td>578</td>
<td>681</td>
<td>2257</td>
<td>2951</td>
<td>45.40</td>
<td>1576</td>
<td>694</td>
</tr>
<tr>
<td>16</td>
<td>642</td>
<td>751</td>
<td>1958</td>
<td>2576</td>
<td>44.18</td>
<td>1207</td>
<td>618</td>
</tr>
<tr>
<td>17</td>
<td>546</td>
<td>694</td>
<td>1856</td>
<td>2369</td>
<td>41.48</td>
<td>1162</td>
<td>513</td>
</tr>
<tr>
<td>18</td>
<td>689</td>
<td>827</td>
<td>2663</td>
<td>2987</td>
<td>48.02</td>
<td>1836</td>
<td>324</td>
</tr>
<tr>
<td>19</td>
<td>625</td>
<td>748</td>
<td>2344</td>
<td>3041</td>
<td>43.19</td>
<td>1596</td>
<td>697</td>
</tr>
<tr>
<td>20</td>
<td>564</td>
<td>706</td>
<td>2114</td>
<td>2909</td>
<td>54.47</td>
<td>1408</td>
<td>795</td>
</tr>
<tr>
<td>21</td>
<td>762</td>
<td>836</td>
<td>2796</td>
<td>3259</td>
<td>52.64</td>
<td>1960</td>
<td>463</td>
</tr>
<tr>
<td>22</td>
<td>612</td>
<td>749</td>
<td>2090</td>
<td>2576</td>
<td>39.56</td>
<td>1341</td>
<td>486</td>
</tr>
<tr>
<td>23</td>
<td>560</td>
<td>774</td>
<td>2281</td>
<td>2873</td>
<td>49.27</td>
<td>1507</td>
<td>592</td>
</tr>
<tr>
<td>24</td>
<td>634</td>
<td>749</td>
<td>1754</td>
<td>2961</td>
<td>40.67</td>
<td>1005</td>
<td>1207</td>
</tr>
</tbody>
</table>

Ortalamalar (±SS) 629±67 747±56 2174±270 2931±317 42.38±6.6 1427±254 757±275
Deneklerin egzersiz testi sırasında maksimal MET değerleri bireysel kapasite farklılıklarını nedeniyle değişmekte olup (minimum 8.5 MET - maksimum 15.5 MET) ortalama değer 12±1.8 MET olarak bulundu. AE’deki MET değerleri ise ortalama olarak 9±1.7 MET olarak bulundu ve bu değer minumum 6 MET – maksimum 13 MET arasında değişti. VO$_2$ MET değeri aerobik bölgede 6 MET iken (minimum 3.5 MET, maksimum 9 MET) anaerobik bölgede 3 MET (minimum 1 MET, maksimum 4.5 MET) oldu.

![Graph](https://via.placeholder.com/150)

Şekil 5.4: Şiddeti düzenli olarak artan yük karşı yapılan egzersiz testi sırasında deneklerin VKİ (kg/m2) ve MET ilişkisinin lineer regresyon analizi (n=24).

Tüm deneklerin VKİ (kg/m2) ve maksimal MET kapasiteleri arasındaki ilişkinin lineer regresyon analizi ile değerlendirilmesi sonucunda negatif korelasyon olduğu bulundu (R=-0.52, p<0.05).
Şekil 5.5: Çalışmaya katılan deneklerin aerobik ve anaerobik egzersiz bölgesindeki ΔVO₂ cevaplarının karşılaştırılabilmesi (n=24) (**p<0.001).

Deneklerin egzersiz sırasında aerobik ve anaerobik bölgelerdeki VO₂ ortalama değerleri sırasıyla 1427±254 ml/dk ve 757±275 ml/dk olarak bulundu (Şekil 5.5). Aerobik ve anaerobik VO₂ cevapları arasında anlamlı farklılık gözlandı (p<0.001).

Şekil 5.6: Şiddeti düzenli olarak artan yük karşı yapılan egzersiz testi sırasında deneklerin aerobik egzersiz bölgesindeki Δ iş gücü-VO₂ ilişkisinin lineer regresyon analizi (n=24).
Tüm deneklerin aerobik egzersiz bölgesindeki ΔVO_2 ve iş üretim kapasiteleri (ΔW) arasındaki ilişkinin lineer regresyon analizi ile değerlendirilmesi sonucunda pozitif korelasyon olduğu bulundu ($p<0.001$) (Şekil 5.6).

![Şekil 5.6: Tüm deneklerin aerobik egzersiz bölgesindeki ΔVO_2 ve iş üretim kapasiteleri (ΔW) arasındaki ilişkinin lineer regresyon analizi ile değerlendirilmesi sonucunda pozitif korelasyon olduğu bulundu ($p<0.001$).](image)

$R=0.3$
$p=0.12$

Şekil 5.7: Şiddet düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin anaerobik egzersiz bölgesindeki Δ iş gücü-VO_2 ilişkisinin lineer regresyon analizi ($n=24$).

Buna karşılık; tüm deneklerin anaerobik egzersiz bölgesi ΔVO_2 ve iş üretim kapasiteleri (ΔW) arasındaki ilişki lineer regresyon analizi ile değerlendirildiğinde ise aralarında istatistiksel olarak anlamlı bir ilişki olmadığı görüldü (Şekil 5.7).

Deneklerin maksimal egzersiz performanslarında ulaştıkları VO2 değerinin vücut ağırlıkları ile ilişkisi ($VO_{2max/kg}$) ortalama olarak 42.38±6.6 ml/dk/kg
olarak bulundu. Buna ilave olarak deneklerin AE’de ulaştıkları VO₂ değerinin vücut ağırlıkları ile ilişkisi (AE/kg) 31.6±6.1 ml/dk/kg olarak bulundu.

Şekil 5.8: Çalışmaya katılan deneklerin aerobik ve anaerobik egzersiz bölgeleri ΔO₂ pulse cevaplarının karşılaştırılgı olarak gösterimi (n=24) (p=0.06).

Egzersiz performansının değerlendirilmesinde kullanılan diğer önemli bir kriter olan O₂ pulse aerobik ve anaerobik egzersiz bölgelerinde karşılaştırılgı olarak değerlendirildi (Şekil 5.8). Her kalp atımında pulmoner kana eklenen O₂ hacmi olan O₂ pulse (VO₂/HR) değeri ise aerobik bölgede 29±10.5 ml/atım, anaerobik bölgede 22.3±8.3 ml/atım olarak bulundu (Şekil 5.8). O₂ pulse değeri için aerobik ve anaerobik bölgelerin cevabı istatistiksel olarak farklılık göstermemiştir (p=0.06).
5.2. Şiddeti Düzenli Olarak Artan Yükę Karşı Yapılan Egzersiz Testi Sırasında Karbondioksit Atılımı Cevabı

Deneklerin egzersiz sırasında vücüt fonksiyonlarının incelenmesinde önemli gaz değişim parametrelerinden olan VCO₂ değerleri ise; ısınmada, istirahatta, AE’de ve W_{max}'da sırası ile 658±123 ml/dk, 727±69 ml/dk, 2236±277 ml/dk ve 3360±409 ml/dk olarak bulundu (Tablo 5.3).

İş gücü şiddeti düzenli olarak artan egzersiz testi sırasında VCO₂ artan iş gücüne başlangıçta paralel olarak artış gösterdi (Şekil 5.9). AE üstü bölgede ise VCO₂-iş gücü arasındaki paralellik bozulmakta ve VCO₂ iş gücüne göre daha hızlı şekilde artış göstermektedir (Şekil 5.9).

Şekil 5.9: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında örnek bir deneğin VCO₂-iş gücü ilişkisi (eğik kalın çizgi lineerliği, dikey kesikli çizgi AE’yi göstermektedir).
Tablo 5.3: Artan yükে karşı yapılan egzersiz testi sırasında deneklerin bireysel istirahat, ısınma, AE, maksimal VCO₂, ∆ aerobik VCO₂ ve ∆ anaerobik VCO₂ değerleri ve ortalamaları (±SS).

<table>
<thead>
<tr>
<th>Denek No</th>
<th>İstirahatta VCO₂ (ml) değeri</th>
<th>ısmıada VCO₂ (ml) değeri</th>
<th>AE’de VCO₂ (ml) değeri</th>
<th>VCO₂ₚₘₐₓ (ml) değeri</th>
<th>∆ aerobik VCO₂ (ml) değeri</th>
<th>∆ anaerobik VCO₂ (ml) değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>669</td>
<td>782</td>
<td>2173</td>
<td>3968</td>
<td>1391</td>
<td>1795</td>
</tr>
<tr>
<td>2</td>
<td>725</td>
<td>748</td>
<td>2727</td>
<td>4556</td>
<td>1979</td>
<td>1829</td>
</tr>
<tr>
<td>3</td>
<td>663</td>
<td>730</td>
<td>1948</td>
<td>2808</td>
<td>1218</td>
<td>860</td>
</tr>
<tr>
<td>4</td>
<td>655</td>
<td>740</td>
<td>2132</td>
<td>3668</td>
<td>1392</td>
<td>1536</td>
</tr>
<tr>
<td>5</td>
<td>561</td>
<td>671</td>
<td>1872</td>
<td>3770</td>
<td>1201</td>
<td>1898</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>764</td>
<td>2353</td>
<td>2925</td>
<td>1589</td>
<td>572</td>
</tr>
<tr>
<td>7</td>
<td>867</td>
<td>686</td>
<td>2329</td>
<td>4226</td>
<td>1643</td>
<td>1897</td>
</tr>
<tr>
<td>8</td>
<td>568</td>
<td>669</td>
<td>2674</td>
<td>3839</td>
<td>2005</td>
<td>1165</td>
</tr>
<tr>
<td>9</td>
<td>411</td>
<td>631</td>
<td>2002</td>
<td>3432</td>
<td>1371</td>
<td>1430</td>
</tr>
<tr>
<td>10</td>
<td>450</td>
<td>688</td>
<td>2204</td>
<td>3571</td>
<td>1516</td>
<td>1367</td>
</tr>
<tr>
<td>11</td>
<td>851</td>
<td>878</td>
<td>1747</td>
<td>3103</td>
<td>869</td>
<td>1356</td>
</tr>
<tr>
<td>12</td>
<td>570</td>
<td>656</td>
<td>2023</td>
<td>3702</td>
<td>1367</td>
<td>1679</td>
</tr>
<tr>
<td>13</td>
<td>728</td>
<td>780</td>
<td>2070</td>
<td>3778</td>
<td>1290</td>
<td>1708</td>
</tr>
<tr>
<td>14</td>
<td>555</td>
<td>622</td>
<td>1940</td>
<td>3915</td>
<td>1318</td>
<td>1975</td>
</tr>
<tr>
<td>15</td>
<td>714</td>
<td>661</td>
<td>2568</td>
<td>3877</td>
<td>1907</td>
<td>1309</td>
</tr>
<tr>
<td>16</td>
<td>836</td>
<td>743</td>
<td>2337</td>
<td>3230</td>
<td>1594</td>
<td>893</td>
</tr>
<tr>
<td>17</td>
<td>578</td>
<td>729</td>
<td>2213</td>
<td>3231</td>
<td>1484</td>
<td>1018</td>
</tr>
<tr>
<td>18</td>
<td>811</td>
<td>892</td>
<td>2315</td>
<td>3750</td>
<td>1423</td>
<td>1435</td>
</tr>
<tr>
<td>19</td>
<td>678</td>
<td>760</td>
<td>2641</td>
<td>3747</td>
<td>1881</td>
<td>1106</td>
</tr>
<tr>
<td>20</td>
<td>562</td>
<td>734</td>
<td>2053</td>
<td>3886</td>
<td>1319</td>
<td>1833</td>
</tr>
<tr>
<td>21</td>
<td>776</td>
<td>803</td>
<td>2597</td>
<td>4074</td>
<td>1794</td>
<td>1477</td>
</tr>
<tr>
<td>22</td>
<td>798</td>
<td>716</td>
<td>2337</td>
<td>3230</td>
<td>1621</td>
<td>893</td>
</tr>
<tr>
<td>23</td>
<td>617</td>
<td>717</td>
<td>2496</td>
<td>3760</td>
<td>1779</td>
<td>1264</td>
</tr>
<tr>
<td>24</td>
<td>559</td>
<td>654</td>
<td>1930</td>
<td>3800</td>
<td>1276</td>
<td>1870</td>
</tr>
<tr>
<td>Ortalama</td>
<td>658±123</td>
<td>727±69</td>
<td>2236±277</td>
<td>3360±409</td>
<td>1509±279</td>
<td>1423±393</td>
</tr>
</tbody>
</table>

(±SS)
Ayrıca deneklerin VCO₂ değerleri; aerobik bölgede 1509±279 ml/dk, anaerobik bölgede ise 1423±393 ml/dk olarak bulundu (Şekil 5.10). Şiddetini düzenli olarak artan yük karşı yapılan egzersiz testi sırasında aerobik ve anaerobik bölgenin ∆VCO₂ cevapları arasında farklılık görülmedi (p=0.43).

Şekil 5.10: Çalışmaya katılan deneklerin aerobik ve anaerobik egzersiz bölgelerindeki ∆VCO₂ cevaplarının karşılaştırılması olarak gösterimi (n=24) (p=0.43).

Tüm deneklerin aerobik egzersiz bölgesindeki ∆VCO₂ ve iş üretim kapasiteleri (ΔW) arasındaki ilişkinin lineer regresyon analizi ile değerlendirilmesi sonucunda pozitif korelasyon olduğu bulundu (p<0.001) (Şekil 5.11).

Şekil 5.11: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin aerobik egzersiz bölgesindeki Δ iş gücü-VCO$_2$ ilişkisinin regresyon analizi (n=24).

Tüm deneklerin anaerobik egzersiz bölgesindeki ΔVCO$_2$ ve iş üretim kapasiteleri (ΔW) cevaplarının lineer regresyon analizi ile değerlendirildiğinde pozitif bir korelasyon görüldü (p<0.05) (Şekil 5.12).

Şekil 5.12: Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin anaerobik egzersiz bölgesindeki Δ iş gücü-VCO$_2$ ilişkisinin regresyon analizi (n=24).
5.3. Şiddeti Düzenli Olarak Artan Yük Karşı Yapılan Egzersiz Testi

Sırasında Tidal Sonu Parsiyel Basınç Cevapları

Tidal hacim sonu parsiyel O\(_2\) basıncının (P\(_{\text{ETO}_2}\)) ortalama (±SS) değerleri istirahatta, ısınmada, AE’de ve W\(_{\text{max}}\)’da sırasıyla; 107.3±4.8 kPa, 106.5±4.5 kPa, 107.9±4.1 kPa, 114.6±5.4 kPa oldu (Şekil 5.13). İstirahat, ısınma ve AE’deki P\(_{\text{ETO}_2}\) değerleri arasında istatistiksel olarak anımlı farklık bulunmadı. Buna karşılık maksimal egzersiz performansındaki P\(_{\text{ETO}_2}\) değeri istatistiksel olarak anımlı artış gösterdi (p<0.05).

![Şekil 5.13: Bireylerin istirahatte, ısınmada, AE’de ve W\(_{\text{max}}\)’da P\(_{\text{ETO}_2}\) ortalama (±SS) değerlerinin gösterimi (n=24) (*p<0.05).](attachment:plot.png)

Tidal hacim sonu parsiyel CO\(_2\) basıncı (P\(_{\text{ETCO}_2}\)) ortalama (±SS) değerleri ise; istirahatta 37.2±3.5 kPa ve ısınma döneminde 38.1±3.5 kPa olarak bulundu. İstatistiksel olarak bu iki değer anımlı farklık göstermemektedir. AE’de P\(_{\text{ETCO}_2}\) değeri 41.3±4.1 kPa’ya yükseldi. Bu değer ısınma dönemde göre istatistiksel
olarak anlamlı farklılık ifade etmektedir. Maksimal egzersiz performansında $P_{ET}CO_2$ 37.3±6 kPa’ya azaldı. Bu değer ısınma dönemine göre istatistiksel olarak farklılık göstermemekte fakat AE’deki değere göre anlamlı olarak farklı bulundu ($p<0.001$) (Şekil 5.14).

![Şekil 5.14: Deneklerin istirahatte, ısınmada, AE’de ve W_{max}’da $P_{ET}CO_2$ ortalama (±SS) değerlerinin gösterimi (n=24) (**$p<0.001$).](image)

5.4. Şiddeti Düzenli Olarak Artan Yük Karşı Yapılan Egzersiz Testi Sırasında Kalp Atım Hızının Verdiği Cevaplar

Deneklerin kalp atım hızı iş gücü ilişkisi genel olarak farklılık göstermekle birlikte deneklerin büyük bir kısmında bu ilişki testin sonuna kadar lineer bir şekilde gözlandı (Şekil 5.15). Bazı deneklerde ise maksimal efora doğru sağa veya sola doğru kırılmalar gözlandı.
Şekil 5.15: Siddetti düzenli olarak artan yük karşı yapılan egzersiz testi sırasında örnek bir deneğin kalp atım hızı-iş gücü ilişkisi (düz çizgi lineerliği göstermekte).

Deneklerde ısınma periyodu başlangıcında kalp atım hızı 90±7 atım/dk olarak bulundu. Vücudun egzersiz testine alışması için uyguldığımız 20 W iş gücündeki ısınma döneminde ise kalp atım hızı değeri 96±7 atım/dk olarak belirlendi. İş gücünün 15 W/dk olarak artırıldığı yükleme döneminde vücutta yapılan işi karşılamak için kalp atım hızı artış gösterdi ve AE’de kalp atım hızı 150±13 atım/dk oldu. W_{max} değerine ulaşıldığı dönemde ise kalp atım hızı 185±10 atım/dk olarak bulundu (Tablo 5.4).

Tablo 5.4: Deneklerin istirahat, ısınma, AE, W_{max} ve beklenen ortalama (±SS) kalp atım hızı değerleri (n=24).

<table>
<thead>
<tr>
<th></th>
<th>Isınma</th>
<th>AE</th>
<th>W_{max}</th>
<th>Beklenen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalp Atım Hızı Değerleri (atım/dk)</td>
<td>96±7</td>
<td>150±13</td>
<td>185±10</td>
<td>200±1</td>
</tr>
</tbody>
</table>
Şekil 5.16: Deneklerin istirahat, ısınma (20 W), AE (156 W) ve \(W_{\text{max}} \)’daki (233 W) kalp atım hızı ortalama (±SS) değerlerinin gösterimi (n=24).

Deneklerin aerobik ve anaerobik bölgelerdeki kalp atım hızı ortalama değerleri sırası ile 52±12 atım/dk ve 36±11 atım/dk oldu. Deneklerin aerobik bölgede iş gücü kalp atım hızı ortalama oranı 2.75±0.9 W/atım/dk iken anaerobik bölgede 2.20±0.5 W/atım/dk olarak bulundu.

Şekil 5.17: Deneklerin aerobik ve anaerobik egzersiz bölgelerindeki \(\Delta \) kalp atım hızı ortalama (±SS) değerlerinin karşılaştırmalı olarak gösterimi (n=24) (*p<0.05).
Tüm deneklerin aerobik egzersiz bölgeleri \(\Delta \) kalp atım hızı ve iş üretim kapasiteleri \(\Delta W \) arasındaki ilişki lineer regresyon analizi ile değerlendirildiğinde korelasyon görülmedi \((p=0.12) \) (Şekil 5.18).

![Şekil 5.18: Deneklerin aerobik egzersiz bölgesindeki \(\Delta \) kalp atım hızı-iş gücü ilişkisinin lineer regresyon analizi \((n=24) \).](image)

Tüm deneklerin anaerobik egzersiz bölgeleri \(\Delta \) kalp atım hızı ve iş üretim kapasiteleri \(\Delta W \) arasındaki ilişki lineer regresyon analizi ile değerlendirildiğinde pozitif yönde anlamlı bir korelasyon görüldü \((p<0.001) \) (Şekil 5.19).

![Şekil 5.19: Deneklerin anaerobik egzersiz bölgesindeki \(\Delta \) kalp atım hızı-iş gücü ilişkisinin lineer regresyon analizi \((n=24) \).](image)
5.5. Şiddeti Düzenli Olarak Artan Yüke Karşı Yapılan Egzersiz Testi Sırasında Solunum Parametreleri

İstirahat döneminde deneklerde \(V_E \) ortalama olarak 18.9±3.1 L/dk bulundu. 20 W iş gücündeki ısınma dönemindeki ortalama \(V_E \) değeri ise 22.1±3.1 L/dk bulundu. İş gücünün 15 W/dk olarak artırıldığı yükleme döneminde \(V_E \) bisiklet ergometrenin pedal gücünün artmasına paralel olarak artış gösterdi. AE’deki \(V_E \) değerleri ortalama 59±9.5 L/dk olarak belirlendi. \(W_{\text{max}} \) değerinde ise \(V_E \) 110.7±25 L/dk’ya ulaştı (Tablo 5.5).

Tablo 5.5: Şiddeti düzenli olarak artan yük karşı yapılan egzersiz testi sırasında deneklerin istirahat, ısınma dönemi, AE ve \(W_{\text{max}} \) ’daki dakika solunum (\(V_E \) L/dk) ortalama (±SS) değerleri (n=24).

<table>
<thead>
<tr>
<th>Ölçüm</th>
<th>İstirahat</th>
<th>(Isınma)</th>
<th>AE</th>
<th>(W_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_E) (L/dk)</td>
<td>18.9±3.1</td>
<td>22.1±3.1</td>
<td>59.0±9.5</td>
<td>110.7±25</td>
</tr>
</tbody>
</table>

Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin \(V_E \) (L/dk) değerleri AE noktasına kadar lineer bir artış gösterirken, AE noktasında kırılma olmakta ve \(W_{\text{max}} \) değerine kadar hızlı bir artış göstermektedir (Şekil 5.20).
Şekil 5.20: Şiddeti düzenli olarak artan yükse karşı yapılan egzersiz testi sırasında örnek bir deneğin \(V_E \)-iş gücü ilişkisi. Kesikli, dikey çizgi AE noktasını, düz, eğimli çizgi lineerliği göstermekte.

Şekil 5.21: Deneklerin istirahat, ısıtnma (20 W), AE (156 W) ve \(W_{max} \)’daki (233 W) \(V_E \) (L/dk) ortalama (±SS) değerlerinin gösterimi (n=24).
Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında elde edilen parametreler sonucunda deneklerin aerobik bölümde ortalama (±SS) ΔV_E (L/dk) değerleri 36.8±8.8 L/dk iken anaerobik bölgede bu değer 51.6±20.9 L/dk’ya yükseldi (Şekil 5.22).

![Şekil 5.22: Aerobik ve anaerobik egzersiz bölgelerinde deneklerin ΔV_E (L/dk) ortalama (±SS) değerlerinin karşılaştırılmaları olarak gösterimi (n=24) (*p<0.05).](image)

Tüm deneklerin aerobik egzersiz bölgeleri ΔV_E ve iş üretim kapasiteleri (ΔW) arasındaki ilişki lineer regresyon analizi ile değerlendirildiğinde pozitif yönde anlamlı bir korelasyon görüldü (p<0.001) (Şekil 5.23).
Şekil 5.23: Deneklerin aerobik egzersiz bölgesinde ΔV_E-iş gücü ilişkisinin lineer regresyon analizi (n=24).

Tüm deneklerin aerobik egzersiz bölgeleri ΔV_E ve iş üretim kapasiteleri (ΔW) arasındaki ilişki lineer regresyon analizi ile değerlendirildiğinde pozitif yönde anlamlı bir korelasyon görüldü ($p<0.05$) (Şekil 5.24).

Şekil 5.24: Deneklerin anaerobik egzersiz bölgesinde ΔV_E-iş gücü ilişkisinin lineer regresyon analizi (n=24).
6. TARTIŞMA VE SONUÇ

Artan yüke karşı yapılan egzersiz test protokolü kullanılarak uygulanan KPET; hasta bireylerin fonksiyonel kapasitelerinin değerlendirilmesi için çeşitli fizyolojik değişkenlerin ölçümünü içermektedir (7, 16, 37 85). Bu test protokolü; hasta bireylere ilave olarak çocuklara, sedanter ve antrenmanlı sağlıklı yetişkin bireylere, yaşılara ve farklı fonksiyonel kapasiteye sahip bireylere etkin bir şekilde uygulanmaktadır (86, 87, 88). Bu çalışmada; antrenmanlı bireylere şiddet düzenli olarak artan yüke karşı yapılan egzersiz testi uygulanan deneklerin fonksiyonel kapasitelerindeki değişimler tespit edildi. Ayrıca aerobik ve anaerobik egzersiz bölgeleri cevapları karşılaştırılarak değerlendirildi.

Deneklere uygulanan şiddet düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında deneklerin vücut ağırlıkları başına üretikleri iş kapasitesi ortalama olarak 3.34±0.4 W/kg bulundu. Bu çalışmada elde edilen değer normal erkek bireyler için kabul edilen ortalama değerlerin üstündedir (89, 90). Çalışmamızda egzersiz testini gerçekleştiren bireyler sedanter bireylerden fiziksel kapasitesi yüksek olan deneklerdir ve bu nedenle elde ettikimiz veriler literatür ile uyumlu dur.

Sağlıklı sedanter bireyler için AE’deki kilogram başına iş üretim değeri yaklaşık olarak 1.65 W/kg arasında normal kabul edilir (89). Bu çalışmada AE’deki kilogram başına iş üretim değeri 2.26±0.4 W/kg olarak bulundu. Bu değer literatürde sedanter bireyler için kabul edilen değerlerden yüksektr (91). Deneklerin aerobik bölgede ortalama iş gücü değeri 136.2±25 W iken anaerobik bölgede 76.4±19 W’a düştü. Aerobik ve anaerobik bölgedeki ortalama iş gücü değerleri arasında istatistiksel olarak anlamlı farklılık bulunuyor. Deneklerin
aerobik bölgedeki kilometre başına iş gücü değeri 1.97±0.4 W/kg iken anaerobik bölgede 1.0±0.2 W/kg değerine düştü. Bu değerler arasındaki anlamlı farklılık deneklerin anaerobik bölgedeki iş üretme kapasitelerinin aerobik bölgede göre daha düşük olduğunu göstermektedir. Bireylerin egzersiz sırasında ulaştıkları maksimal iş kapasiteleri ile vücut ağırlığı arasındaki ilişki önemlidir bir fitnes değerlendirme kriteri olarak kullanılmaktadır (85, 92). Bu çalışmada literatüre eklemeyi hedeflediğimiz nokta ise maksimal iş kapasitesi ile vücut ağırlığı oranı ile ilave olarak sadece aerobik ve anaerobik bölgedeki iş kapasitesi vücut ağırlığı oranının da önemli bir kriter olarak düşünülmektedir. Böylece bireylerin maksimal iş kapasitelerinde artış veya azalışın kaynağı aerobik bölge mi anaerobik bölge mi olduğu kolaylıkla belirlenecektir. Böylelikle bireylerde egzersiz kapasiteleri ile ilgili gelişebilecek problemleri çözmenin daha kolay olmasını sağlayacaktır.

çalışmamızda kullandığımız AE terimi; VE, LE ve LAE gibi farklı isimler ile de anılmaktadır (94, 95, 96, 97).

Günümüzde artan iş gücü yükü karşısında karşı yapılan egzersiz testi yaygın olarak kullanılmakta ve önemini korumaktadır (16, 22, 74, 75, 86, 101, 102, 103). Sabit yük egzersiz testleri sadece aerobik veya anaerobik iş gücü yüklerini içerir. Buna

Rusko ve arkadaşları 1992 yılında, Greg ve arkadaşları ise 2009 yılında yaptıkları çalışmalarda normal VO_{2max}/kg değerinin sağlıklı sedanter bireyler için 25-40 ml/dk/kg iken yüksek antrenmanlı sağlıklı bireylerde 40 ml/dk/kg’dan 75 ml/dk/kg’ye kadar çıkıktığını bulmuşlardır (54, 87). Arena R. ve arkadaşları tarafından 2011 yılında yapılan çalışmada; VO_{2pik}’in yetişkin erkek bireyler için ortalamada 43.9-29.4 ml/dk/kg iken yetişkin bayanlarda 37.4-25.1 ml/dk/kg olduğu ve VO_{2pik} değerinin cinsiyet ile değiştiği ortaya konmuştur (114). Fiziksel kapasitesi sedanter bireylerden yüksek olan erkek deneklerle gerçekleştirdiğimiz bu çalışmada VO_{2max}/kg değeri ortalama olarak 42.3±6.6 ml/dk/kg olarak bulundu. Bu değer antrenmanlı erkek bireyler için kabul edilen değerler içinde yer almaktadır (115, 116).
Literatürde yapılan çalışmalarda bireylerin ulaştığı maksimal O₂ kullanım seviyesi ile vücut ağırlığı arasındaki ilişki vücut fonksiyonel kapasitesini değerlendirmek için önemli bir kriter olarak kullanılmıştır. Bu önemli kriteri değerlendirdiğimiz gibi sadece aerobik bölgedeki cevabı ve sadece anaerobik bölgedeki cevabı analiz ederek değerlendirdik. İlave olarak aerobik ve anaerobik bölgede elde edilen cevaplar karşılaştırmalı olarak da analiz edildi.

Şekil 5.6’da görüldüğü gibi artan yük karşı yapılan egzersiz testinin aerobik bölgesinde iş gücü-VO₂ ilişkisi anlamlı olarak lineerlik gösterirken anaerobik bölgede metabolizmanın farklı olmasından dolayı VO₂-iş gücü arasında anlamlı ilişki görülmemektedir (Şekil 5.7). Aerobik egzersiz bölgesinde metabolizma O₂ ile desteklendiği için iş gücü ile lineer ilişki görülmüştür (85, 117). Buna karşılık anaerobik egzersiz bölgesinde iş gücü metabolizmanın hem aerobik hemde anaerobik kaynakları ile desteklendiği için anlamlı ilişki bulunmaktadır. Yaptığımız ilave analizde artan yük karşı yapılan egzersiz testinin aerobik bölgesinde deneklerin ortalama VO₂/kg değeri yaklaşık 21 ml/dk/kg iken anaerobik bölgede bu değer 11 ml/dk/kg olarak bulundu. Anaerobik bölgede VO₂/kg değeri aerobik bölgeye göre anlamlı olarak azalmıştır.

Şiddeti düzenli olarak artan egzersiz testi aerobik bölgesinde VCO₂-iş gücü ile paralel olarak artmaktadır (Şekil 5.9). Egzersizin bu bölgesinde ölçülen VCO₂’nin kaynağı aerobik metabolizma sonucunda üretilen “metabolik CO₂”dir. Belli bir noktadan sonra, yani AE üstü bölgede, VO₂ ile iş gücü arasındaki paralelliğin aynı kalmasına rağmen deneklerin VCO₂ parametrelerinde yapılan iş gücü ile olan paralelliği bozulmakta ve daha da hızlanmaktadır. (85). Bu AE üstü bölgedeki VCO₂’nin hızlanma nedeni anaerobik metabolizma sonucunda üretilen
“non-metabolik CO₂”dir. Yani normal aerobik metabolizma ile üretilen CO₂’ye ilave non-metabolik CO₂’in eklenmesi VCO₂’de hızlanmaya neden olmaktadır (34, 117).

Elde ettğimiz verilerde deneklerin aerobik ve anaerobik bölgedeki iş gücü oranının farklılığına rağmen her iki bölgenin VCO₂ ortalama değerleri arasında istatistiksel olarak anlamlı farklılık görülmedi (Şekil 5.10). Ancak istatistiksel olarak elde edilen veriler bize deneklerin aerobik ve anaerobik bölgelerindeki iş gücü-VCO₂ ilişkileri arasında pozitif korelasyon olduğunu gösterdi (Şekil 5.11 ve Şekil 5.12). Deneklerin aerobik ve anaerobik VCO₂/kg değerleri sırası ile 21.9 ml/dk/kg ve 20.5 ml/dk/kg oldu. Bu değerler arasında istatistiksel olarak bir fark görülmedi. Burada önemli noktalardan biri ise aerobic egzersiz bölgesinde tüketilen O₂ ile üretilen CO₂’nin yaklaşık olarak 21 ml/dk/kg olması, bireylerin enerji tüketimlerinin göstergesi olan solunum katsayısının 1.00 olmasıdır. Bilindiği gibi antrenmanlı birey, yükleme testinin aerobic kısmında enerji kaynağı olarak karbonhidratları kullanmaktadır (16, 118). Literatürde bireylerin fiziksel kapasitesinin değerlendirilmesinde çoğunlukla gaz değişim parametrelerinden VO₂ ele alınmıştır. Bunun nedeni VCO₂ değerinin ortam koşulları (nem, sıcaklık, basınç, alınan besinler, solunum problemi) ile fazlasyyla etkilenmesi ve farklılık göstermesidir (16, 85).

Hiperventilasyon sonucu vücudta CO₂ atmış (VCO₂) artıtıma da P_{ET}CO₂'de azalmaya neden olmaktadır (Şekil 5.14).

Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında iş gücünün düzenli artışına karal atmışındaki artış eşlik etmektedir (119, 120, 121). Artan kalp atm sayısı ve atm hacmi gerekli olan O₂’nin ve besin maddelerinin dokulara ulaştırmasını sağlamakta. Yapılan çalışmalarında kalp atm sayısının uygulanan iş gücüyle lineer artış gösterilmiştir (122, 123). Bununla birlikte eşik altı ve eşik üstü bölgelerde iş gücü kaal atm ilişkisi karşılaştırılmamıştır. Deneklerin aerobik bölgede iş gücü kalp atm hızı ortalama oranı 2.75±0.9 W/atım/dk iken anaerobik bölgede 2.20±0.5 W/atım/dk'ya düştü. Ayrıca deneklerin kalp atm hızı ortalama değeri anaerobik bölge göre aerobik bölgede anlamlı olarak yüksekti (Şekil 5.17). Kalp atm hızı aerobik bölgede iş gücü ile lineer korelasyon göstermezken anaerobik bölgede pozitif yönde anlamlı bir şekilde korelasyon gösterdi (Şekil.18 ve Şekil 5.19). Bireyin yapılan iş gücü ile kalp atm sayısı arasındaki ilişkinin aerobik ve anaerobik iş gücü bölgelerinde (iki farklı metabolizma) karşılaştırılmalı olarak belirlenmesi kalbin etkinliğinin belirlenmesinde önemli bir yöntemdir.

Egzersiz testlerinin önemli kriterlerinden biri olan, her kalp atmında pulmoner kana eklenen O₂ değerini gösteren “O₂ pulse” (16, 85); aerobic ve anaerobic bölgelerde istatistiksel olarak anlamlı farklılık göstermemiştir (Şekil 5.8).

Şiddeti düzenli olarak artan yükü karşı yapılan egzersiz testi sırasında aerobic ve anaerobic egzersiz bölgelerinde solunum sisteminin, kalp atmının, metabolizmanın uygulanan iş gücü ile ilişkisi belirlenebilir (25, 124, 125, 126,
Ayrıca bu iki farklı metabolizma bölgesinin karşılaştırılması araştırmaçısı bireylerin durumu ile ilgili önemli bilgiler sağlayabilir. Şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi sırasında W_{max}, VO_{2max}, VCO_2 AE, maksimal kalp atım değerleri gibi önemli birçok parametre elde edilir (125, 126, 131, 132, 133, 134, 135, 136, 137).

V_E’nin egzersiz testine verdiği cevap VCO_2 cevabına benzer şekilde (87, 138, 139). Şekil 20’de görüldüğü gibi AE’ye kadar lineer artış gösterirken AE üstünde non-metabolik CO_2’nin solunumu uyarması ile V_E hızlanmaktadır. Aerobik bölgende V_E 36.8±8.8 L/dk iken anaerobik bölgede bu değer 51.6±20.9 L/dk’ya yükselmiştir (Şekil 5.22). Deneklerin hem aerobik hemde anaerobik egzersiz bölgelerinde V_E-iş gücü ilişkisi pozitif yönde anlamlı bir korelasyon gösterdi (Şekil 23 ve Şekil 5.24). Aerobik egzersiz bölgesinde V_E-iş gücü ilişkisinin lineerliği aerobik metabolizmanın solunum tarafından desteklendiğinin anlamlı göstergesidir. Anaerobik egzersiz bölgesinde solunum iş gücü ilişkisi ise anaerobik metabolizma sonucunda üretilen CO_2’nin V_E tarafından atıldığı en önemli göstergesidir.

Sonuç olarak; şiddeti düzenli olarak artan yüke karşı yapılan egzersiz testi ile hem aerobik hem de anaerobik egzersiz kapasiteleri aynı test esnasında iş gücü sürekliliği sağlanarak bireylerin aerobik ve anaerobik egzersiz bölgelerindeki organ ve sistemlerinin fonksiyonel durumlarının karşılaştırılmalı olarak değerlendirilebilmesi sağlandı.

Bireylerin aerobik ve anaerobik egzersiz bölgelerinde iş üretirken kullandıkları O_2’nin, ürettiğleri CO_2’nin, kullandıkları V_E’nin ve kalp atım hızı
değerlerinin analiz edilmesi ile standart bir değer bulunmasının sedanter ve hasta bireyler için karşılaştırma kriteri olarak kullanılabileceği ortaya konulmuştur.

Böylece spor bilimlerinde; sedanter ve antrenmanlı bireylerin vücut kondisyonunun arttırılmasına ve fitnes değerlendirmesinde, klinik bilimlerde; depresif, obez, kalp yetmezliği olan, pulmoner rahatsızlığı olan ve cerrahi operasyon geçirecek olan bireylerde KPET uygulamalarında hastalık tedavisine yardımcı olarak aerobic ve anaerobic egzersiz bölgeleri cevaplarının incelenmesinin daha etkin sonuçlar elde etmek için yararlı olacağını düşünülmektedir.

Bu çalışmanın temel noktası; egzersiz testinin maksimal değerlerinin incelenmesine ilave olarak aerobic ve anaerobic bölgelerin ayrı ayrı değerlendirilmesinin de bireylerin fonksiyonel durumlarının belirlenmesinde daha etkin bir kriter olacağını, Normal ve antrenmanlı bireylerin aerobic ve anaerobic egzersiz bölgelerindeki kardiyak, metabolik ve respiratuvar parametrelerinin referans değerlerinin bulunması gelecekte yapılması gereken çalışmalardır.
7. KAYNAKLAR

39. Owles W. H. Alterations in the lactic acid content of the blood as a result of light exercise, and associated changes in the CO$_2$-combining power of the blood and in the alveolar CO$_2$ pressure. J Physiol. 1930; 69: 214-237.

93.

75. Bentley DJ, McNaughton LR. Comparison of W(peak), VO$_2$(peak) and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance J. Sci Med Sport. 2003; 6(4):422-35.

8. ÖZGEÇMİŞ

Ulusal Yayınlar:

- Serhatlıoğlu İ, Kaya H, Aslan N, Oruç S, Özçelik O, "Artan Güce Karşı Yapılan Egzersiz Testi Sırasında Solunum Parametrelerinin Genç Erkek ve

Uluslararası Yayınlar:

